• Title/Summary/Keyword: Fungal gene

Search Result 420, Processing Time 0.036 seconds

Isolation and Characterization of Colletotrichum Isolates Causing Anthracnose of Japanese Plum Fruit (자두 탄저병균의 분리 및 동정)

  • Lee, Yong-Se;Ha, Da-Hee;Lee, Tae-Yi;Park, Min-Jung;Chung, Jong-Bae;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • BACKGROUND: Although the filamentous fungal pathogen Colletotrichum species causing anthracnose disease on various fruits including peach, apple, persimmon and grape, there is no report on Japanese plum in Korea. METHODS AND RESULTS: In 2016, diseased fruits showing typical anthracnose symptoms of Japanese plum were collected in market and ochards. Diseased tissue was cut off and disinfected subsequently with 70% ethanol for 1 min, and in 1% sodium hypochloride solution for 1 min, followed by three washes with sterile distilled water. The disinfected tissues were placed onto potato dextrose agar (PDA), and incubated at $25^{\circ}C$ in the dark for 5 to 7 days. For single-spore isolation, conidia were scraped off the plate using a loop, and suspended with 10 mL sterile distilled water. One hundred microliter of the conidial suspension was spread on PDA plates and incubated at $25^{\circ}C$. Finally, one germinated conidium was transferred onto PDA plates. Morphological and cultural characteries of colonies and spores of isolated Colletotrichum were observed after 7 to 10 days incubation on PDA. Molecular identification of isolates were analyzed by comparing rDNA-ITS gene sequences with NCBI GeneBank. CONCLUSION: Of eleven isolates of Colletotrichum isolated from anthracnose diseased Japanese plum fruits, six were identified as C. acutatum, and five as C. gloeosporioides based on diagnostic characteristics such as colony growth rate, shape and size of conidia, and rDNA-ITS sequences. This is the first report of Colletotrichum causing the anthracnose on Japanese plum in Korea.

vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05

  • Wu, Xia;Chi, Xiaoyan;Wang, Yanhua;Zhang, Kailu;Kai, Le;He, Qiuning;Tang, Jinxiu;Wang, Kewen;Sun, Longshuo;Hao, Xiuying;Xie, Weihai;Ge, Yihe
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant $G05{\Delta}phz{\Delta}prn::lacZ$ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant $G05{\Delta}vfr$ and $G05{\Delta}phz{\Delta}prn::lacZ{\Delta}vfr$. By quantifying ${\beta}-galactosidase$ activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant $G05{\Delta}vfr$, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.

MoJMJD6, a Nuclear Protein, Regulates Conidial Germination and Appressorium Formation at the Early Stage of Pathogenesis in Magnaporthe oryzae

  • Li Zhang;Dong Li;Min Lu;Zechi Wu;Chaotian Liu;Yingying Shi;Mengyu Zhang;Zhangjie Nan;Weixiang Wang
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.361-373
    • /
    • 2023
  • In plant-pathogen interactions, Magnaporthe oryzae causes blast disease on more than 50 species of 14 monocot plants, including important crops such as rice, millet, and most 15 recently wheat. M. oryzae is a model fungus for studying plant-microbe interaction, and the main source for fungal pathogenesis in the field. Here we report that MoJMJD6 is required for conidium germination and appressorium formation in M. oryzae. We obtained MoJMJD6 mutants (ΔMojmjd6) using a target gene replacement strategy. The MoJMD6 deletion mutants were delayed for conidium germination, glycogen, and lipid droplets utilization and consequently had decreased virulence. In the ΔMojmjd6 null mutants, global histone methyltransferase modifications (H3K4me3, H3K9me3, H3K27me3, and H3K36me2/3) of the genome were unaffected. Taken together, our results indicated that MoJMJD6 function as a nuclear protein which plays an important role in conidium germination and appressorium formation in the M. oryzae. Our work provides insights into MoJMJD6-mediated regulation in the early stage of pathogenesis in plant fungi.

Distribution and Characteristics of Microorganisms Associated with Settled Particles During Asian Dust Events (황사 발생 기간 낙하먼지에 포함된 미생물의 분포 및 특성)

  • Koh, Ji-Yun;Jang, Chan-Gook;Cha, Min-Ju;Park, Kyo-Nam;Kim, Min-Kyu;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.134-140
    • /
    • 2012
  • Asian dust storms originating in the arid desert of China and Mongolia usually occur from late winter through spring, and more than one million tons of dust per year is transported to the Korean Peninsula by the prevalent westerly winds. We supposed that these dust particles could include bioaerosols and act as carriers of microorganisms. In order to clarify the dynamics of microorganisms moving with these particles, the concentration and composition of microorganisms associated with settled particles were compared between samples collected during Asian dust events and those under non-dust periods. From February to April 2008, settled dust particles were collected at one location in Ulsan using rainfall meter of 200 mm diameter. During this period, there was one Asian dust event in Ulsan. The bacterial concentrations were higher in samples collected during Asian dust event than those under non-dust period, whereas fungal concentrations were rather similar regardless of the Asian dust event. We analyzed 16S rRNA gene sequences of 45 bacterial isolates obtained from the settled particle samples. These isolates belonged to either genus Bacillus or genus Streptococcus and were tentatively identified as B. amyloliquefaciens, B. aryabhattai, B. atrophaeus, B. licheniformis, B. megaterium, B. methylotrophicus, B. pumilus, B. sonorensis, B. subtlis, B. vallismortis, S. epidermidis, and S. succinus. In cases of fungal isolates, genera such as Mucor, Alternaria, Cladosporium, and Aspergillus were tentatively identified from samples collected at both Asian dust and non-Asian dust periods. It appears that endospore-forming bacteria such as Bacillus sp. rather than fungal spores are more likely to be associated with Asian dust particles.

Cloning of the Cellulase Gene and Characterization of the Enzyme from a Plant Growth Promoting Rhizobacterium, Bacillus licheniformis K11 (고추역병 방제능이 있는 식물성장촉진 균주 Bacillus licheniformis K11의 cellulase 유전자의 cloning 및 효소 특성 조사)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • The cellulase gene of Bacillus licheniformis K11 which has plant growth-promoting activity by auxin and antagonistic ability by siderophore was cloned in pUC18 using PCR employing heterologous primers. The 1.6kb PCR fragment contained the full sequence of the cellulase gene, denoted celW which has been reported to encode a 499 amino acid protein. Similarity search in protein data base revealed that the cellulase from B. licheniformis K11 was more than 97% identical in amino acid sequence to those of various Bacillus spp. The cellulase protein from B. licheniformis K11, overproduced in E. coli DH5${\alpha}$ by the lac promoter on the vector, had apparent molecular weight of 55 kDa upon CMC-SDS-PAGE analysis. The protein not only had enzymatic activity toward carboxymethyl-cellulose (CMC), but also was able to degrade insoluble cellulose, such as Avicel and filter paper (Whatman$^{\circledR}$ No. 1). In addition, the cellulase could degrade a fungal cell wall of Phytophthora capsici. Consequently B. licheniformis K11 was able to suppress the peperblight causing P. capsici by its cellulase. Biochemical analysis showed that the enzyme had a maximum activity at 60$^{\circ}C$ and pH 6.0. Also, the enzyme activity was activated by Co$^{2+}$ of Mn$^{2+}$ but inhibited by Fe$^{3+}$ or Hg$^{2+}$. Moreover, enzyme activity was not inhibited by SDS or sodium azide.

Genes of Wild Rice (Oryza grandiglumis) Induced by Wounding and Yeast Extract (상처와 효모추출물 처리조건에서 유발되는 야생벼 유전자 스크린)

  • Shin, Sang-Hyun;Im, Hyun-Hee;Lee, Jai-Heon;Kim, Doh-Hoon;Chung, Won-Bok;Kang, Kyung-Ho;Cho, Sung-Ki;Shin, Jeong-Sheop;Chung, Young-Soo
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.650-656
    • /
    • 2004
  • Oryza grandiglumis (CCDD, 2n=48), one of the wild rice species, has been known to possess fungal-,bacterial-, and insect-resistance against sheath blight, rice blast, bacterial leaf blight and brown plant hopper (Nilaparvata lugens). To rapidly isolate differentially expressed genes responding to fungal and wounding stress, wounding and yeast extract were treated to O. grandiglumis for 24 hrs. Suppression subtractive hybridization (SSH) method was used to obtain differentially expressed genes from yeast extract and wounding treated plants. Seven hundreds and seventy six clones were obtained by subcloning PCR product, and colony array and screening were carried out using radio-isotope labeled cDNA probes prepared from the wounding and yeast extract treated plants. One hundred and fifteen colonies were confirmed as true positive ones. Average insert size of the clones were ranged from 400 bp to 700 bp and all the inserts were sequenced. To decide the identity of those clones, sequences were analyzed by sequence homology via GenBank database. The homology search result showed that 68 clones were matched to the genes with known function; 16 were related to primary metabolism, 5 to plant retrotransposons, 5 to defense related metallothionein-like genes. In addition to that, others were matched to various genes with known function in amino acid synthesis and processing, membrane transport, and signal transduction, so on. In northern blot analysis, induced expressions of ogwfi-161, ogwfi-646, ogwfi-663, and ogwfi-695 by wounding and yeast extract treatments were confirmed. The result indicates that SSH method is very efficient for rapid screening of differentially expressed genes.

Genome Sequence Analysis of Chrysanthemum White Rust pathogen Puccinia horiana and Sterol 14-demethylase as Drug Target (국화흰녹병균 Puccinia horiana 유전체 분석과 약물 표적으로서의 sterol 14-demethylase)

  • Kim, Jeong-Gu;Park, Sang Kun;Park, Ha-Seung;Kwon, Soo-Jin;Kim, Seung Hwan;Lee, Dong-Jun;Sohn, Seong-Han;Lee, Byoung Moo;Bae, Shin-Chul;Ahn, Il-Pyung;Kim, Changhoon;Baek, Jeong Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.468-472
    • /
    • 2013
  • Chrysanthemum is an economically important horticultural plant in many countries. The white rust is one of the most devastating diseases caused by an obligate fungal pathogen Puccinia horiana. This is being controlled mostly by application of chemicals. In Korea, 26 items are registered and 10 items contain 6 triazole compounds. To identify and to obtain the information of the drug target for triazoles, possible sterol 14-demethylase orthologues were extracted. From the draft genome information, the nucleotide sequence of the sterol 14-demethylase gene was identified. The amino acid sequence was deduced and the tertiary structure of the enzyme was predicted. This protein showed no less than 84% amino acid sequence identities to those of genus Puccinia and no more than 68% to those of other genus.

Fumonisin Production by Field Isolates of the Gibberella fujikuroi Species Complex and Fusarium commune Obtained from Rice and Corn in Korea (우리나라 벼와 옥수수로부터 분리한 Gibberella fujikuroi 종복합체와 Fusarium commune 소속 균주의 푸모니신 생성능)

  • Lee, Soo-Hyung;Kim, Ji-Hye;Son, Seung-Wan;Lee, Theresa;Yun, Sung-Hwan
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.310-316
    • /
    • 2012
  • Gibberellea fujikuroi species (Gf) complex comprises at least 15 species, most of which not only causes serious plant diseases, but also produces mycotoxins including fumonisins. Here, we focused on the abilities of the field isolates belonging to the Gf complex associated with rice and corn, respectively in Korea to produce fumonisin, all of which were confirmed to carry FUM1, the polyketide synthase gene essential for fumonisin biosynthesis. A total of 88 Gf complex isolates (55 F. fujikuroi, 10 F. verticillioides, 20 F. proliferatum, 2 F. subglutinans, and 1 F. concentricum), and 4 isolates of F. commune, which is a non-member of Gf complex, were grown on rice substrate and determined for their production levels of fumonisins by a HPLC method. Most isolates of F. verticillioides and F. proliferatum, regardless of host origins, produced fumonisin $B_1$ and $B_2$ at diverse ranges of levels ($0.5-2,686.4{\mu}g/g$, and $0.7-1,497.6{\mu}g/g$, respectively). In contrast, all the isolates of F. fujikuroi and other Fusarium species examined produced no fumonisins or only trace amounts ($<10{\mu}g/g$) of fumonisins. Interestingly, the frequencies of relatively high fumonisin-producers among the F. proliferatum and F. fujikuroi isolates derived from corn were higher than those among the fungal isolates from rice. In addition, it is a first report demonstrating the ability of the FUM1-carrying F. commune isolates from rice to produce fumonisins.

WISKOTT-ALDRICH SYNDROME WITH DENTAL PROBLEMS : CASE REPORT (Wiskott-Aldrich 증후군 환아의 증례보고)

  • Lee, Yeon-Joo;Hyun, Hong-Keun;Jang, Chul-Ho;Kim, Yeong-Jae;Kim, Jung-Wook;Jang, Ki-Taek;Kim, Chong-Chul;Hahn, Se-Hyun;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.3
    • /
    • pp.468-472
    • /
    • 2007
  • The Wiskott-Aldrich Syndrome (WAS) is an inherited immunodeficiency caused by a variety of mutations in the gene encoding the WAS protein (WASp). First described in 1937 by Wiskott, the incidence of WAS has so far been estimated at 4 in 106 live births. The Wiskott-Aldrich Syndrome is an X-linked condition characterized by 1) an increased tendency to bleed caused by a reduced number of platelets, 2) recurrent bacterial, viral and fungal infections, and 3) eczema of the skin. The purpose of this report is to present cases highlighting the clinical features of the syndrome and the required considerations in the treatment of patients. The report consists of two particular cases: a 2-year-11-month-old boy seen for a routine oral examination prior to his bone marrow transplantation and a 2-year-6-month-old boy with herpes gingivostomatitis and teeth discoloration.

  • PDF

Expression Pattern of Antioxidant Enzymes Genes in the Ventral Prostates of Rats Exposed to Procymidone and/or Testosterone after Castration

  • Lee, Jong-Geol;Yon, Jung-Min;Jung, Ki-Youn;Lin, Chunmei;Jung, A-Young;Lee, Beom-Jun;Yun, Young-Won;Nam, Sang-Yoon
    • Journal of Embryo Transfer
    • /
    • v.26 no.4
    • /
    • pp.265-270
    • /
    • 2011
  • Procymidone is a fungicide with anti-androgenic properties widely used to protect fruits from fungal infection, which induces an excessive reactive oxygen species production in male reproductive organs. In this study, to clarify whether procymidone affect the cellular antioxidant system of prostate at onset of puberty, gene expression patterns of the representative antioxidant enzymes such as cytoplasmic glutathione peroxidase (GPx1), phospholipid hydroperoxide GPx (PHGPx), selenoprotein P (SePP), cytoplasmic copper/zinc superoxide dismutase (SOD1), and manganese SOD (SOD2) were investigated in the rat ventral prostates exposed to procymidone using real-time RT-PCR analyses. Seven-week-old Sprague-Dawley rats castrated at 6 weeks old were treated with procymidone (25, 50, or 100 mg/kg per day) orally for 7 consecutive days after testosterone propionate (0.4 mg/kg per day) administration by subcutaneous injection. As compared to normal control animals, GPx1 mRNA expression in prostates significantly increased by the administration with TP and/or procymidone. However, PHGPx and SOD1 mRNA levels significanatly decreased by over 25 mg/kg of procymidone treatment and SePP and SOD2 mRNA levels was significanatly reduced by over 50 mg/kg of procymidone treatment. These findings indicate that procymidone may affect the antioxidant system of prostatic cells in up-regulation mode of GPx1, but in down-regulation modes of PHGPx, SePP, SOD1, and SOD2, suggesting that procymidone may affect differently the cellular antioxidant system of prostate according to the exposure doses.