Browse > Article

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea  

CHEONG HOON (Laboratory of Microbial Genomics, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Department of Applied Biology and Environmental Sciences, College of Agriculture and Life Sciences, Gyeongsang National University)
PARK SOO-YOUNG (Laboratory of Microbial Genomics, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology)
RYU CHOONG-MIN (Laboratory of Microbial Genomics, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology)
KIM JIHYUN F. (Laboratory of Microbial Genomics, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology)
PARK SEUNG-HWAN (Laboratory of Microbial Genomics, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology)
PARK CHANG SEUK (Department of Applied Biology and Environmental Sciences, College of Agriculture and Life Sciences, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1286-1298 More about this Journal
Abstract
The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.
Keywords
Paenibacillus; rhizosphere; 16S rDNA; PGRP; nitrogen-fixation; BOX-PCR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
1 Berge, O., T. Heulin, and J. Balandreau. 1991. Diversity of diazotroph populations in the rhizosphere of maize (Zea mays L.) growing on different French soil. Biol. Fertil. Soils 11: 210-215   DOI
2 Berge, O., G. Marie-Helene, W. Achouak, P. Normand, and T. Heulin. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52: 607-616   DOI
3 Heulin, T., O. Berge, P. Mavingui, L. Gouzou, K. P. Hebbar, and J. Balandreau. 1994. Bacillus polymyxa and Rahnella aquatilis, the dominant $N_2$-fixing bacteria associated with wheat rhizosphere in French soils. Eur. J. Soil Biol. 30: 35- 42
4 Kim, D. S., R. J. Cook, and D. M. Weller. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87: 551- 558   DOI   ScienceOn
5 Kim, J., J.-G. Kim, B.-K. Park, O. Choi, C. S. Park, and I. G. Hwang. 2003. Identification of genes for biosynthesis of antibacterial compound from Pseudomonas fluorescens B16, and its activity against Ralstonia solanacearum. J.Microbiol. Biotechnol. 13: 292-331
6 Mavingui, P. and T. Heulin. 1994. In vitro chitinase antifungal activity of soil, rhizosphere and rhizoplane populations of Bacillus polymyxa. Soil Biol. Biochem. 26: 801-803   DOI   ScienceOn
7 Petersen, D. J., M. Shishido, F. B. Holl, and C. P. Chanway. 1995. Use of species and strain-specific PCR primers for identification of conifer root associated Bacillus spp. FEMS Microbiol. Lett. 133: 71-76   DOI   PUBMED
8 Rovira, A. D. 1963. Microbial inoculation of plants. 1. Establishment of free-living nitrogen-fixing bacteria in the rhizosphere and their effects on maize, tomato and wheat. Plant Soil 19: 304-314   DOI
9 Seldin, L., J. D. van Elsas, and E. G. C. Phnido. 1983. Bacillus nitrogen fixers from Brazilian soils. Plant Soil 70: 243-255   DOI
10 Storm, K. S., P. E. Rosenthal, and A. Swanson. 1977. Polymixin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723-763   DOI   ScienceOn
11 Von Bredemann, G. 1908. Untersuchungen uber die Variation und das Stickstoffbindungsvermogen des Bacillus asterosporus A. M., ausgefuhrt an 27 Sta mmen verschiedener Herkunft. Zbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 2: 44-89
12 Von der Weid, I., E. Paiva, A. Nobrega, J. D. van Elsas, and L. Seldin. 2000. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in cerrado soil. Res. Microbiol. 151: 369-381   DOI   ScienceOn
13 Chung, Y. R., C. H. Kim, I. H. Hwang, and J. S. Chun. 2000. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int. J. Syst. Evol. Microbiol. 50: 1495-1500   DOI   ScienceOn
14 Choo, Q. C., M. R. Samian, and N. Najimudin. 2003. Phylogeny and characterization of three nifH-homologous genes from Paenibacillus azotofixans. Appl. Environ.Microbiol. 69: 3658-3662   DOI   ScienceOn
15 Coelho, M. R., I. von der Weid, V. Zahner, and L. Seldin. 2003. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction restriction fragment length polymophism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiol. Lett. 222: 243-250   DOI   ScienceOn
16 Von der Weid, I., G. F. Duarte, J. D. van Elsas, and L. Seldin. 2002. Paenibacillus sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int. J. Syst. Evol. Microbiol. 52: 2147-2153   DOI   ScienceOn
17 Walker, R., A. A. Powell, and B. Seddon. 1998. Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J. Appl. Microbiol. 84: 791-801   DOI   PUBMED   ScienceOn
18 Helbig, J. 2001. Biological Control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J. Phytopathol. 149: 265-273   DOI   ScienceOn
19 Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253-260   DOI   ScienceOn
20 Budi, S. W., D. van Tuinen, C. Arnould, E. Dumas-Gaudot, V. Gianinazzi-Pearson, and S. Gianinazzi. 2000. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15: 191-199   DOI   ScienceOn
21 Oedjijono, M. A. and C. Dragar. 1993. Isolation of bacteria antagonistic to a range of plant pathogenic fungi. Soil Biol. Biochem. 25: 247-250   DOI   ScienceOn
22 Bezzate, S., S. Aymerich, R. Chambert, S. Czarnes, O. Berge, and T. Heulin. 2000. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ. Microbiol. 2: 333-342   DOI   ScienceOn
23 Versalovic, J., M. Schneider, F. J. de Bruijn, and J. R. Lupski. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell. Biol. 5: 25-40
24 Huddleston, A. S., N. Cresswell, M. C. P Neves, J. E. Beringer, S. Baumberg, D. I. Thomas, and E. M. H. Wellington. 1997. Molecular detection of streptomycin-producing Streptomycetes in Brazilian soil. Appl. Environ. Microbiol. 63: 1288-1297
25 Moon, G. S., C. H. Kang, Y. R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocinproducing Enterococcus sp. from kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924- 931
26 Seldin, L., A. S. Rosado, D. W. da Cruz, A. Nobrega, J. D. van Elsas, and E. Paiva. 1998. Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizoshere, and non-root-associated soil from maize planted in two different Brazilian soils. Appl. Environ. Microbiol. 64: 3860-3868
27 Kloepper, J., R. Lifshitz, and R. M. Zablotowicz. 1989. Freeliving bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44   DOI   ScienceOn
28 Lebuhn, M., T. Heulin, and A. Hartmann. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325- 334   DOI   ScienceOn
29 Pusey, P. L. and C. L. Wilson. 1984. Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Disease 68: 753-756   DOI
30 Ueda, T., Y. Suga, N. Yahiro, and T. Matsuguchi. 1995. Remarkable $N_2$-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 177: 1414-1417   DOI
31 Nielsen, J. and G. Sorensen. 1997. Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 22: 183-192   DOI   ScienceOn
32 Ryu, C. M. and C. S. Park. 1997. Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681, pp. 186-190. Proceedings of the Fourth International Workshop on Plant Growth-Promoting Rhizobacteria Japan-OECD Joint Workshop
33 Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, H. X. Wei, P. W. Pare, and J. W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927-4932
34 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
35 Schloter, M., M. Lebuhn, T. Heulin, and A. Hartmann. 2000. Ecology and evolution of bacterial microdiversity. FEMS Microbiol. Rev. 24: 647-660   DOI   ScienceOn
36 Hwang, S. F., K. F. Chang, R. J. Howard, B. A. Deneka, and G. D. Turnbull. 1996. Decrease in incidence of Pythium damping-off of field pea by seed treatment with Bacillus spp. and metalaxyl. J. Plant Dis. Protect. 103: 31-41
37 Choi, O. H., J. W. Kim, C. M. Ryu, and C. S. Park. 2004. Colonization and population changes of a biocontrol agent, Paenibacillus polymyxa E681, in seeds and roots. Plant Pathol. J. 20(2): 97-102   DOI
38 Lee, Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG- 22. J. Microbiol. Biotechnol. 14: 1014-1021
39 Bae, Y. S., H. K. Kim, and C. S. Park. 1990. An improved method for rapid screening and analysis of root colonizing biocontrol agents. Korean J. Plant Pathol. 6: 325-332
40 Pichard, J. P., D. Larue, and J. L. Thouvenot. 1995. Gavaserin and Saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett. 133: 215- 218   DOI   ScienceOn
41 Jeon, Y. H., S. P. Chang, I. Hwang, and Y. H. Kim. 2003. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J. Microbiol.Biotechnol. 13: 881-891
42 Mavingui, P., G. Laguerre, O. Berge, and T. Heulin. 1992. Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl. Environ. Microbiol. 58: 1894-1903