DOI QR코드

DOI QR Code

Isolation and Characterization of Bacillus Species Possessing Antifungal Activity against Ginseng Root Rot Pathogens

인삼 뿌리썩음병에 길항력이 있는 Bacillus 균의 분리 동정 및 특성 조사

  • Kim, Byung-Yong (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Sung-Il (Institute of Ginseng and Medicinal Plants Research, Gangwon Agricutlural Research and Extension Services) ;
  • Kim, Wan-Gyu (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA)
  • 김병용 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 안재형 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 송재경 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김성일 (강원도 농업기술원 인삼약초연구소) ;
  • 김완규 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2012.11.03
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

Ginseng (Panax ginseng C. A. Meyer) is an economically important crop in Korea. While the consumption of the crop is gradually increasing, the yield is decreasing due to the injury of continuous cultivation or infection of soil-borne fungal pathogens such as Cylindrocarpon destructans, Fusarium solani, Rhizoctonia solani and Sclerotinia nivalis. In order to find promising biocontrol agents, we have isolated 439 soil bacteria from ginseng cultivated soil and tested their antifungal activities against ginseng rot pathogens. Among them, 3 strains were finally selected and tested for the elucidation of their genetic and biochemical properties. They were identified as Bacillus amyloliquefaciens using phylogenetic analysis based on 16S rRNA gene sequences. Moreover, all selected strains showed positive reaction for PCR detection targeting biosynthetic gene sequences of iturin A and surfactin. The results provided promising evidences that the bacterial strains isolated from ginseng cultivated soil can be novel biocontrol agents for ginseng cultivaion.

인삼 뿌리썩음병을 일으키는 병원균의 생물적 방제를 위해서 토양에서 유용미생물을 분리하여 항균 활성과 생화학적 특성을 조사하였다. 이를 위해 강원도 인삼재배 토양에서 총 439균주의 세균을 분리하여 이 중에서 항균 활성이 가장 우수한 3균주(GP4-1, GR2-2, GR4-5)의 미생물을 최종 선발하였다. 주요 인삼 뿌리 썩음병원균인 5종(Cylindrocarpon destructans, Fusarium oxysporum, Fusarium solani, Rhizoctonia solani, Sclerotinia nivalis)에 대한 생장 억제능을 조사한 결과, 선발 균주들이 매우 높은 항균 활성을 갖는 것을 확인하였다. 최종 선발 균주들의 정확한 동정을 위해서 16S rRNA 유전자 염기 서열로 계통 유전학적 분석을 하였고, 모든 균주들이 Bacillus amyloliquefaciens subsp. plantarum $FZB42^T$과 가장 높은 상동성(99.9 %)이 있음을 보였다. 선발 균주들이 생산하는 2차 대사물질 구명을 위해 주요 Bacillus 대사산물의 생합성 유전자를 PCR 반응으로 검정하였다. 모든 선발 균주들에서 iturin A와 surfactin의 생합성 유전자가 검출되었으며, GR4-5 균주에서는 bacillomycin D의 생합성 유전자도 추가로 검출되었다. 생화학적 특성 조사에서는 선발 균주들이 섬유소 분해 효소와 단백질 분해 효소의 활성이 있음을 확인하였다. 본 연구를 통해 인삼재배 토양에서 분리한 토양 미생물들이 인삼 뿌리썩음병의 생물적 방제를 위한 미생물제제로서의 활용가치가 높음을 제시하였다.

Keywords

References

  1. Abderrahmani, A., A. Tapi, F. Nateche, M. Chollet, V. Leclre, B. Wathelet, H. Hacene and P. Jacques (2011) Bioinformatics and molecular approaches to detect nrps genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Appl. Microbiol. Biotechnol. 92(3):571-581. https://doi.org/10.1007/s00253-011-3453-6
  2. Alvarez, F., M. Castro, A. Prncipe, G. Borioli, S. Fischer, G. Mori and E. Jofr (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J. Appl. Microbiol. 112:159-174. https://doi.org/10.1111/j.1365-2672.2011.05182.x
  3. Athukorala, S. N. P., W. G. D. Fernando and K. Y. Rashid (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55(9):1021-1032. https://doi.org/10.1139/W09-067
  4. Bechet, M., T. Caradec, W. Hussein, A. Abderrahmani, M. Chollet, V. Leclre, T. Dubois, D. Lereclus, M. Pupin and P. Jacques (2012) Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl. Microbiol. Biotechnol. 95:593-600. https://doi.org/10.1007/s00253-012-4181-2
  5. Borriss, R., X. H. Chen, C. Rueckert, J. Blom, A. Becker, B. Baumgarth, B. Fan, R. Pukall, P. Schumann and C. Sprer (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: A proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61(8):1786-1801. https://doi.org/10.1099/ijs.0.023267-0
  6. Chenna, R., H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins and J. D. Thompson (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31(13):3497-3500. https://doi.org/10.1093/nar/gkg500
  7. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  8. Fu, J., J. Sun, R. Zhou and X. Yan (2012) Molecular detection of Cylindrocarpon destructans in infected chinese ginseng roots and soil. Afr. J. Biotechnol. 11(42):9955-9960.
  9. Guo, R., X. Liu, S. Li and Z. Miao (2009) In vitro inhibition of fungal root-rot pathogens of Panax notoginseng by rhizobacteria. Plant Pathol. J. 25(1):70-76. https://doi.org/10.5423/PPJ.2009.25.1.070
  10. Jang, C.-S., J. Lee, S. Kim, J. Song, S. Yoo and H. Kim (2005) Specific detection of root rot pathogen, Cylindrocarpon destructans, using nested PCR from ginseng seedlings. Res. Plant Dis. 11(1):48-55. https://doi.org/10.5423/RPD.2005.11.1.048
  11. Jang, C. S., J. H. Lim, M. W. Seo, J. Y. Song and H. G. Kim (2010) Direct detection of Cylindrocarpon destructans, root rot pathogen of ginseng by nested PCR from soil samples. Mycobiology 38(1):33-38. https://doi.org/10.4489/MYCO.2010.38.1.033
  12. Jang, Y. L. and Y. H. Kim (2011) Biocontrol efficacies of Bacillus species against Cylindrocarpon destructans causing ginseng root rot. Plant Pathol. J. 27(4):333-341. https://doi.org/10.5423/PPJ.2011.27.4.333
  13. Kim, B.-Y., T. D. Zucchi, H.-P. Fiedler and M. Goodfellow (2012) Streptomyces cocklensis sp. nov., a dioxamycinproducing actinomycete. Int. J. Syst. Evol. Microbiol. 62(2): 279-283. https://doi.org/10.1099/ijs.0.029983-0
  14. Kumar, S., K. Tamura and M. Nei (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinformatics 5(2):150-163. https://doi.org/10.1093/bib/5.2.150
  15. Lee, S.-G. (2004) Fusarium species associated with ginseng (Panax ginseng) and their role in the root-rot of ginseng plant. Res. Plant Dis. 10(4):248-259. https://doi.org/10.5423/RPD.2004.10.4.248
  16. Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406-425.
  17. Seifert, K., C. McMullen, D. Yee, R. Reeleder and K. Dobinson (2003) Molecular differentiation and detection of ginsengadapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology 93(12):1533-1542. https://doi.org/10.1094/PHYTO.2003.93.12.1533
  18. Tapi, A., M. Chollet-Imbert, B. Scherens and P. Jacques (2010) New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl. Microbiol. Biotechnol. 85(5):1521-1531. https://doi.org/10.1007/s00253-009-2176-4
  19. Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr and H. G. Trueper (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37:463-464. https://doi.org/10.1099/00207713-37-4-463

Cited by

  1. Biological Control of Fusarium Stalk Rot of Maize Using Bacillus spp. vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.280
  2. Characterization of Multifunctional Bacillus sp. GH1-13 vol.20, pp.3, 2016, https://doi.org/10.7585/kjps.2016.20.3.189
  3. Isolation and Characterization of Bacillus Species Having Antifungal Activity Against Pathogens of Ginseng Damping Off vol.20, pp.4, 2016, https://doi.org/10.7585/kjps.2016.20.4.380
  4. Correlation between the Repeated Dermal Exposure to Deltamethrin and Excretion of 3-PBA in Rats vol.22, pp.4, 2018, https://doi.org/10.7585/kjps.2018.22.4.370
  5. Bacillus amyloliquefaciens GR4-5 균주의 토양 내 정량 분석 vol.23, pp.4, 2012, https://doi.org/10.11625/kjoa.2015.23.4.847
  6. 식물생장촉진 Bacillus sp. SB19 균주의 케일 처리에 대한 가뭄 스트레스 완화 효과 vol.24, pp.4, 2016, https://doi.org/10.11625/kjoa.2016.24.4.833
  7. Paenibacillus polymyxa and Burkholderia cepacia Antagonize Ginseng Root Rot Pathogens vol.50, pp.6, 2017, https://doi.org/10.7745/kjssf.2017.50.6.598
  8. 인삼 연작장해 유발토양과 억제토양의 화학성, 미생물상 및 뿌리썩음병 발생 특성 vol.28, pp.2, 2020, https://doi.org/10.7783/kjmcs.2020.28.2.142
  9. Isolation and Characterization of Beneficial Microbe Against Ginseng Root Rot Pathogens vol.24, pp.3, 2012, https://doi.org/10.7585/kjps.2020.24.3.296
  10. Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation vol.37, pp.6, 2012, https://doi.org/10.5423/ppj.ft.09.2021.0138