• Title/Summary/Keyword: Functional molecules

Search Result 675, Processing Time 0.031 seconds

Changes of Quality Characteristics of Low-Molecular Soymilk According to Hydrolysis Time (가수분해 시간에 따른 저분자 두유의 품질특성 변화)

  • Jang, Se-Young;Sin, Kyung-A;Park, Nan-Young;Kim, Dong-Hee;Kim, Mi-Jung;Kim, Jeong-Hoon;Jeong, Yong-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1287-1293
    • /
    • 2008
  • This study investigated quality changes and functions of low-molecular soymilk according to hydrolysis time (30, 60, and 90 minutes). According to the results, pH of hydrolyzed groups were lower than that of the control group but it did not show a large difference according to hydrolysis time while sugar content was reduced with longer hydrolysis time. Although degree of hydrolysis and calcium tolerance increased with longer hydrolysis time, there was not a significant difference according to the time. Among free sugars, contents of glucose and fructose grew while those of sucrose and maltose tended to decline with time. Total free sugar content was the largest with 60 minutes of hydrolysis time recording 827.65 mg%. Total amino acid content was also the highest with hydrolyzed for 60 minutes recording 85.80 mg% and those of all hydrolyzed groups were higher than that of the control group. In addition, the content of essential amino acid increased significantly with time. In SDS-PAGE, checked for the tendency of becoming low molecules, molecular weights were found to be 33 kDa or less kDa in all hydrolyzed groups. When functional characteristics of soymilk such as electron donating, superoxide radical scavenging and ACE inhibitory activities were compared, longer hydrolysis time led to higher activities. From these results, overall quality of low molecular soymilk was superior when hydrolyzed for 60 minutes and the findings should be viable in the development of various types of functionally strengthened low-molecular soymilk in the future.

Utilization of Corynebacterium glutamicum Biomass as a Regenerable Biosorbent for Removal of Reactive Dyes from Aqueous Solution (반응성 염료 제거를 위한 재생 가능한 흡착제로서 Corynebacterium glutamicum 바이오매스의 이용)

  • Won, Sung -Wook;Choi, Sun Beom;Han, Min Hee;Yun, Yeoung-Sang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.542-547
    • /
    • 2005
  • Biosorption is considered to be a promising alternative to replace or supplement the present methods for the treatment of dye-containing wastewater. In this study, the protonated biomass of Corynebacterium glutamicum was evaluated for its potential to remove two types of reactive dyes (Reactive Red 4, Reactive Blue 4) from aqueous solution. The uptakes of dyes were enhanced with decrease in the solution pH, which was likely because the biomass functional groups increased at acidic pH and the positively charged sites could bind the negatively charged sulfonate group ($dye-SO_3^-$) of dye molecules. An equilibrium state was practically achieved in 10 hr. The Langmuir sorption model was used for the mathematical description of the sorption equilibrium. The maximum sorption capacities of C. glutamicum biomass for Reactive Red 4 and Reactive Blue 4 were estimated to 112.36 mg/g and 263.16 mg/g at pH 1, and 71.94 mg/g and 155.88 mg/g at pH 3.

Generation, Diversity Determination, and Application to Antibody Selection of a Human Naïve Fab Library

  • Kim, Sangkyu;Park, Insoo;Park, Seung Gu;Cho, Seulki;Kim, Jin Hong;S.Ipper, Nagesh;Choi, Sun Shim;Lee, Eung Suk;Hong, Hyo Jeong
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.655-666
    • /
    • 2017
  • We constructed a large $na{\ddot{i}}ve$ human Fab library ($3{\times}10^{10}$ colonies) from the lymphocytes of 809 human donors, assessed available diversities of the heavy-chain variable (VH) and ${\kappa}$ light-chain variable (VK) domain repertoires, and validated the library by selecting Fabs against 10 therapeutically relevant antigens by phage display. We obtained a database of unique 7,373 VH and 41,804 VK sequences by 454 pyrosequencing, and analyzed the repertoires. The distribution of VH and VK subfamilies and germline genes in our antibody repertoires slightly differed from those in earlier published natural antibody libraries. The frequency of somatic hypermutations (SHMs) in heavy-chain complementarity determining region (HCDR)1 and HCDR2 are higher compared with the natural IgM repertoire. Analysis of position-specific SHMs in CDRs indicates that asparagine, threonine, arginine, aspartate and phenylalanine are the most frequent non-germline residues on the antibody-antigen interface and are converted mostly from the germline residues, which are highly represented in germline SHM hotspots. The amino acid composition and length-dependent changes in amino acid frequencies of HCDR3 are similar to those in previous reports, except that frequencies of aspartate and phenylalanine are a little higher in our repertoire. Taken together, the results show that this antibody library shares common features of natural antibody repertoires and also has unique features. The antibody library will be useful in the generation of human antibodies against diverse antigens, and the information about the diversity of natural antibody repertoires will be valuable in the future design of synthetic human antibody libraries with high functional diversity.

Odorant Receptors Containing Conserved Amino Acid Sequences in Transmembrane Domain 7 Display Distinct Expression Patterns in Mammalian Tissues

  • Ryu, Sang Eun;Shim, Tammy;Yi, Ju-Yeon;Kim, So Yeun;Park, Sun Hwa;Kim, Sung Won;Ronnett, Gabriele V.;Moon, Cheil
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.954-965
    • /
    • 2017
  • Mammalian genomes are well established, and highly conserved regions within odorant receptors that are unique from other G-protein coupled receptors have been identified. Numerous functional studies have focused on specific conserved amino acids motifs; however, not all conserved motifs have been sufficiently characterized. Here, we identified a highly conserved 18 amino acid sequence motif within transmembrane domain seven (CAS-TM7) which was identified by aligning odorant receptor sequences. Next, we investigated the expression pattern and distribution of this conserved amino acid motif among a broad range of odorant receptors. To examine the localization of odorant receptor proteins, we used a sequence-specific peptide antibody against CAS-TM7 which is specific to odorant receptors across species. The specificity of this peptide antibody in recognizing odorant receptors has been confirmed in a heterologous in vitro system and a rat-based in vivo system. The CAS-TM7 odorant receptors localized with distinct patterns at each region of the olfactory epithelium; septum, endoturbinate and ectoturbinate. To our great interests, we found that the CAS-TM7 odorant receptors are primarily localized to the dorsal region of the olfactory bulb, coinciding with olfactory epithelium-based patterns. Also, these odorant receptors were ectopically expressed in the various non-olfactory tissues in an evolutionary constrained manner between human and rats. This study has characterized the expression patterns of odorant receptors containing particular amino acid motif in transmembrane domain 7, and which led to an intriguing possibility that the conserved motif of odorant receptors can play critical roles in other physiological functions as well as olfaction.

Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli

  • Lee, Jae Taek;Lee, Seung Sik;Mondal, Suvendu;Tripathi, Bhumi Nath;Kim, Siu;Lee, Keun Woo;Hong, Sung Hyun;Bai, Hyoung-Woo;Cho, Jae-Young;Chung, Byung Yeoup
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.594-602
    • /
    • 2016
  • Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of $Ser^{78}$ to $Cys^{78}$ resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of $Cys^{78}$ in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced1 survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone.

Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization (제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석)

  • Jeong, Yeonjun;Moon, Byung-Chul;Jang, Min-Chae;Kim, Yangsoo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2014
  • Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of $I_D/I_G$ regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.

Current Status of Systems Biology in Traditional Chinese medicine - in regards to influences to Korean Medicine (최근 중의학에서 시스템생물학의 발전 현황 - 한의학에 미치는 영향 및 시사점을 중심으로 -)

  • Lee, Seungeun;Lee, Sundong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • Objectives : This paper serves to explore current trends of systems biology in Traditional Chinese Medicine (TCM) and examine how it may influence the Traditional Korean medicine. Methods : Literature review method was collectively used to classify Introduction to systems biology, diagnosis and syndrome classification of systems biology in TCM perspective, physiotherapy including acupuncture, herbs and formula functions, TCM systems biology, and directions of academic development. Results : The term 'Systems biology' is coined as a combination of systems science and biology. It is a field of study that tries to understand living organism by establishing a theory based on an ideal model that analyzes and predicts the desired output with understanding of interrelationships and dynamics between variables. Systems biology has an integrated and multi-dimensional nature that observes the interaction among the elements constructing the network. The current state of systems biology in TCM is categorized into 4 parts: diagnosis and syndrome, physical therapy, herbs and formulas and academic development of TCM systems biology and its technology. Diagnosis and syndrome field is focusing on developing TCM into personalized medicine by clarifying Kidney yin deficiency patterns and metabolic differences among five patterns of diabetes and analyzing plasma metabolism and biomarkers of coronary heart disease patients. In the field of physical therapy such as acupuncture and moxibustion, researchers discovered the effect of stimulating acupoint ST40 on gene expression and the effects of acupuncture on treating functional dyspepsia and acute ischemic stroke. Herbs and formulas were analyzed with TCM network pharmacology. The therapeutic mechanisms of Si Wu Tang and its series formulas are explained by identifying potential active substances, targets and mechanism of action, including metabolic pathways of amino acid and fatty acid. For the academic development of TCM systems biology and its technology, it is necessary to integrate massive database, integrate pharmacokinetics and pharmacodynamics, as well as systems biology. It is also essential to establish a platform to maximize herbal treatment through accumulation of research data and diseases-specific, or drug-specific network combined with clinical experiences, and identify functions and roles of molecules in herbs and conduct animal-based studies within TCM frame. So far, few literature reviews exist for systems biology in traditional Korean medicine and they merely re-examine known efficacies of simple substances, herbs and formulas. For the future, it is necessary to identify specific mechanisms of working agents and targets to maximize the effects of traditional medicine modalities. Conclusions : Systems biology is widely accepted and studied in TCM and already advanced into a field known as 'TCM systems biology', which calls for the study of incorporating TCM and systems biology. It is time for traditional Korean medicine to acknowledge the importance of systems biology and present scientific basis of traditional medicine and establish the principles of diagnosis, prevention and treatment of diseases. By doing so, traditional Korean medicine would be innovated and further developed into a personalized medicine.

Identification and FT-IR Spectrum Analysis of Lichens on Flagpole Support in Beopjusa Temple (법주사 당간지주 지의류의 동정 및 FT-IR 스펙트럼 특성 분석)

  • Kim, Young Hee;Lee, Jeung Min;Choie, Myoungju;Hong, Jin Young;Jo, Chang Wook;Kim, Soo Ji;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.33 no.5
    • /
    • pp.391-398
    • /
    • 2017
  • This study was conducted to investigate lichen as a typical biomass damage on the surfaces of flagpole-supporting stones in the Beopjusa temple. The lichens present on the flagpole-supporting stones were limited to five species. Two dominant lichen species were identified: Aspicilia sp. and Pertusaria flavicans. One foliose species and one fruticose species, which are rarely observed on crustose lichens, were identified as Xanthoparmelia conspersa and Ramalina sekika, respectively. The lichen inhabiting the black algae layer was confirmed as Leprocaulon textum. ATR-FTIR was performed to analyze the secondary metabolites synthesized by the lichens. By comparing the FTIR spectra of Xanthoparmelia conspersa and Ramalina sekika, the synthesized organic acids were confirmed to differ from each other. Furthermore, the spectral changes and characteristics due to functional groups in the molecules were confirmed.

Neuronal Nitric Oxide Synthase-Immunoreactive Neurons In the Hamster Visual Cortex: Lack of Co-localization with Parvalbumin (햄스터 시각피질에서 Neuronal nitric oxide synthase-면역반응성 뉴런: parvalbumin과의 co-localization 부재)

  • Jin Mi-Joo;Lee Jee-Eun;Ye Eun-Ah;Jeon Chang-Jin
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.344-351
    • /
    • 2005
  • Nitric oxide (NO) and calcium-binding proteins occur in various types of cells in the central nervous system. They are important signaling and calcium buffering molecules, respectively. In the present study, using immunocytochemistry we examined the distribution and the co-localization pattern of neurons containing neuronal nitric oxide synthase (nNOS) and parvalbumin in the visual cortex of hamster. The overall number of parvalbumin-immunoreactive (IR) neurons was 17 times higher than that of the nNOS-IR neurons in the hamster visual cortex. The highest differences were found in layer V, where parvalbumin-IR neurons were 54.7 times more abundant than nNOS-IR neurons. Many nNOS- and parvalbumin-IR neurons were similar in size, shape, and manner of distribution in the visual cortex. However, two-color immunofluorescence revealed that no neurons in the hamster visual cortex expressed both nNOS and parvalbumin. The present results indicate that there are subtle species differences in the co-localization pattern between nNOS and calcium-binding proteins. The present results also suggest not only the heterogeneity and functional diversity of nNOS-IRneurons in the visual cortex, but also the importance of understanding animal diversity

The Biological Functions of Plant Long Noncoding RNAs (식물의 긴비암호화 RNA들의 생물학적 기능)

  • Kim, Jee Hye;Heo, Jae Bok
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1097-1104
    • /
    • 2016
  • With the development of next generation sequencing (NGS), large numbers of transcriptional molecules have been discovered. Most transcripts are non -coding RNAs (ncRNAs). Among them, long non-coding RNAs (lncRNAs) with more than 200 nucleotides represent functional RNA molecule that will not be translated into protein. In plants, lncRNAs are transcribed by RNA polymerase II (Pol II) or Pol III, Pol VI and Pol V. After transcription of these lncRNAs, more RNA processing mechanisms such as splicing and polyadenylation occurs. The expression of plant lncRNAs is very low and is tissue specific. However, these lncRNAs are strongly induced by specific external stimuli. Because different external stimuli including environmental stresses induce a large number of plant lncRNAs, these lncRNAs have been gradually considered as new regulatory factors of various biological and development processes such as epigenetic repression, chromatin modification, target mimicry, photomorphogenesis, protein relocalization, environmental stress response, pathogen infection in plants. Moreover, some lncRNAs act as precursor of short RNAs. Although a large number of lncRNAs have been predicted and identified in plants, our current understanding of the biological function of these lncRNAs is still limited and their detailed regulatory mechanisms should be elucidated continuously. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the molecular functions unraveled in plants.