References
- An, B.C., Lee, S.S., Lee, E.M., Lee, J.T., Wi, S.G., Jung, H.S., Park, W., and Chung, B.Y. (2010). A new antioxidant with dual functions as a peroxidase and chaperone in Pseudomonas aeruginosa. Mol. Cells 29, 145-151. https://doi.org/10.1007/s10059-010-0023-1
- An, B.C., Lee, S.S., Lee, E.M., Lee, J.T., Wi, S.G., Jung, H.S., Park, W., Lee, S.Y., and Chung, B.Y. (2011). Functional switching of a novel prokaryotic 2-Cys peroxiredoxin (PpPrx) under oxidative stress. Cell Stress Chap. 16, 317-328. https://doi.org/10.1007/s12192-010-0243-5
- An, B.C., Lee, S.S., Jung, H.S., Kim, J.Y., Lee, Y., Lee, K.W., Lee, S.Y., Tripathi, B. N., and Chung, B.Y. (2015). An additional cysteine in a typical 2-Cys peroxiredoxin of Pseudomonas promotes functional switching between peroxidase and molecular chaperone. FEBS Lett. 589, 2831-2840. https://doi.org/10.1016/j.febslet.2015.07.046
- Angelucci, F., Saccoccia, F., Ardini, M., Boumis, G., Brunori, M., Di Leandro, L., Ippoliti, R., Miele, A.E., Natoli, G., Scotti, S., et al. (2013). Switching between the alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed mutagenesis. J. Mol. Biol. 425, 4556-4568. https://doi.org/10.1016/j.jmb.2013.09.002
- Bhatt, I., and Tripathi, B.N. (2011). Plant peroxiredoxin: catalytic mechanisms, functional significance and future perspectives. Biotechnol. Adv. 29, 850-859. https://doi.org/10.1016/j.biotechadv.2011.07.002
- Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., and Nathan, C. (2002). Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295, 1073-1077. https://doi.org/10.1126/science.1067798
- Chuang, M.H., Wu, M.S., Lo, W.L., Lin, J.T., Wong, C.H., and Chiou, S.H. (2006). The antioxidant protein alkyl hydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. USA 103, 2552-2557. https://doi.org/10.1073/pnas.0510770103
- Gnanasekar, M., Dakshinamoorthy, G., and Ramaswamy, K. (2009). Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem. Biophy. Res. Comm. 386, 333-337. https://doi.org/10.1016/j.bbrc.2009.06.028
- Hall, A., Karplus, P.A., and Poole, L.B. (2009). Typical 2-Cys peroxiredions-structures, mechanisms and functions. FEBS J. 276, 2469-2477. https://doi.org/10.1111/j.1742-4658.2009.06985.x
- Huang, C.H., Chuang, M.H., Wu, Y.H., Chuang, W.C., Jhuang, P.J., and Chiou, S.H. (2010). Characterization of site-specific mutants of alkylhydroperxide reductase with dual functionality from Helicobacter pylori. J. Biochem. 147, 661-669. https://doi.org/10.1093/jb/mvp209
- Ito, H., Kamei, K., Iwamoto, I., Inaguma, Y., Nohara, D., and Kato, K. (2001). Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J. Biol. Chem. 276, 5346-5352. https://doi.org/10.1074/jbc.M009004200
- Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one, two yeast peroxiredoxins display oxidative stressdependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635. https://doi.org/10.1016/j.cell.2004.05.002
- Konig, J., Galliardt, H., Jutte, P., Schaper, S., Dittmann, L., and Dietz, K.J. (2013). The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone. J. Exp. Bot. 64, 3483-3497. https://doi.org/10.1093/jxb/ert184
- Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291. https://doi.org/10.1107/S0021889892009944
- Lee, W., Choi, K.S., Riddell, J., Ip, C., Ghosh, D., Park, J.H., and Park, Y.M. (2007). Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J. Biol. Chem. 282, 22011-22022. https://doi.org/10.1074/jbc.M610330200
- Lee, E.M., Lee, S.S., Tripathi, B.N., Jung, H.S., Cao, G.P., Lee, Y., Singh, S., Hong, S.H., Lee, K.W., Lee, S.Y., et al. (2015). Sitedirected mutagenesis substituting cysteine for serine in 2-Cys peroxiredoxin (2-Cys Prx A) of Arabidopsis thaliana effectively improves its peroxidase and chaperone functions. Ann. Bot.116, 713-725. https://doi.org/10.1093/aob/mcv094
- Mayer, M.P., and Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670-684. https://doi.org/10.1007/s00018-004-4464-6
-
Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.K., Kim, C.W., et al. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to
$H_2O_2$ -induced cell death. J. Biol. Chem. 280, 28775-28784. https://doi.org/10.1074/jbc.M505362200 - Nelson, K.J., and Parsonage, D. (2011). Measurement of peroxiredoxin activity. Curr. Protoc. Toxicol. 49, 7.10.1-7.10.28. https://doi.org/10.1002/0471140856.tx0710s49
- Ochsner, U.A., Vasil, M.L., Alsabbagh, E., Parvatiyar, K., and Hassett, D. (2000). Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyRdependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J. Bacteriol. 182, 4533-4544. https://doi.org/10.1128/JB.182.16.4533-4544.2000
- Park, J.W., Piszczek, G., Rhee, S.G., and Chock, P.B. (2011). Glutathionylation of peroxiredoxin induces decamer to dimers dissociation with concomitant loss of chaperone activity. Biochemistry 50, 3204-3210. https://doi.org/10.1021/bi101373h
- Parsonage, D., Youngblood, D.S., Ganapathy, N.S., Wood, Z.A., Karpus, A.P., and Poole, L.B. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583-10592. https://doi.org/10.1021/bi050448i
- Parsonage, D., Karplus, P.A., and Poole, L.B. (2008). Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc. Natl. Acad. Sci. USA 105, 8209-8214. https://doi.org/10.1073/pnas.0708308105
- Poole, L.B. (1996). Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium 2. Cystine disulfides involved in catalysis of peroxide reduction. Biochemistry 35, 65-75. https://doi.org/10.1021/bi951888k
- Saccoccia, F., Di Micco, P., Boumis, G., Brunori, M., Koutris, I., Miele, A.E., Morea, V., Sriratana, P., Williams, D.L., Bellelli, A., et al. (2012). Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure 20, 429-439. https://doi.org/10.1016/j.str.2012.01.004
- Sharma, K.K., Kaur, H., Kumar, G.S., and Kester, K. (1998). Interaction of 1,1'-bi(4-anilino) naphthalene-5,5'-disulfonic acid with alpha-crystallin. J. Biol. Chem. 273, 8965-8970. https://doi.org/10.1074/jbc.273.15.8965
- Tairum, C.A., de Oliveira, M.A., Horta, B.B., Zara, F.J., and Netto, L.E.S. (2012). Disulfide biochemistry in 2-Cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J. Mol. Biol. 424, 28-41. https://doi.org/10.1016/j.jmb.2012.09.008
- Tripathi, B.N., Bhatt, I., and Dietz, K.J. (2009). Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235, 3-15. https://doi.org/10.1007/s00709-009-0032-0
- Wiederstein, M., and Sippl, M.J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, 407-410.
- Woo, M.-H., Kim, M.S., Chung, N., and Kim, J.-S. (2014). Expression and characterization of a novel 2-deoxyribose-5-phosphate aldolase from Haemophilus influenzae Rd KW20. J. Korean Soc. Appl. Biol. Chem. 57, 655-660. https://doi.org/10.1007/s13765-014-4231-9
- Wood, Z.A., Poole, L.B., Hantgan, R.R., and Karpus, A.P. (2002). Dimers to doughnut: redox sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41, 5493-5505. https://doi.org/10.1021/bi012173m
- Wood, Z.A., Schroder, E., Robin, H.J., and Poole, L.B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
Cited by
- Molecular mechanism of the Escherichia coli AhpC in the function of a chaperone under heat-shock conditions vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-32527-7
- Augmentation of Bri2 molecular chaperone activity against amyloid-β reduces neurotoxicity in mouse hippocampus in vitro vol.3, pp.1, 2016, https://doi.org/10.1038/s42003-020-0757-z
- Effects of Serine or Threonine in the Active Site of Typical 2-Cys Prx on Hyperoxidation Susceptibility and on Chaperone Activity vol.10, pp.7, 2016, https://doi.org/10.3390/antiox10071032
- Oxidative Stress Response in Pseudomonas aeruginosa vol.10, pp.9, 2021, https://doi.org/10.3390/pathogens10091187