Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0106

Generation, Diversity Determination, and Application to Antibody Selection of a Human Naïve Fab Library  

Kim, Sangkyu (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
Park, Insoo (Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Seung Gu (Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University)
Cho, Seulki (Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Jin Hong (Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology)
S.Ipper, Nagesh (Institute of Bioscience and Biotechnology, Kangwon National University)
Choi, Sun Shim (Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University)
Lee, Eung Suk (Scripps Korea Antibody Institute)
Hong, Hyo Jeong (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
Abstract
We constructed a large $na{\ddot{i}}ve$ human Fab library ($3{\times}10^{10}$ colonies) from the lymphocytes of 809 human donors, assessed available diversities of the heavy-chain variable (VH) and ${\kappa}$ light-chain variable (VK) domain repertoires, and validated the library by selecting Fabs against 10 therapeutically relevant antigens by phage display. We obtained a database of unique 7,373 VH and 41,804 VK sequences by 454 pyrosequencing, and analyzed the repertoires. The distribution of VH and VK subfamilies and germline genes in our antibody repertoires slightly differed from those in earlier published natural antibody libraries. The frequency of somatic hypermutations (SHMs) in heavy-chain complementarity determining region (HCDR)1 and HCDR2 are higher compared with the natural IgM repertoire. Analysis of position-specific SHMs in CDRs indicates that asparagine, threonine, arginine, aspartate and phenylalanine are the most frequent non-germline residues on the antibody-antigen interface and are converted mostly from the germline residues, which are highly represented in germline SHM hotspots. The amino acid composition and length-dependent changes in amino acid frequencies of HCDR3 are similar to those in previous reports, except that frequencies of aspartate and phenylalanine are a little higher in our repertoire. Taken together, the results show that this antibody library shares common features of natural antibody repertoires and also has unique features. The antibody library will be useful in the generation of human antibodies against diverse antigens, and the information about the diversity of natural antibody repertoires will be valuable in the future design of synthetic human antibody libraries with high functional diversity.
Keywords
diversity; human monoclonal antibody; $na{\ddot{i}}ve$ antibody library; phage display; somatic hypermutation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hoet, R.M., Cohen, E.H., Kent, R.B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., et al. (2005). Generation of high-affinity human antibodies by combining donorderived and synthetic complementarity-determining-region diversity. Nat. Biotechnol. 23, 344-348.   DOI
2 Hoogenboom, H.R. (2005). Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105-1116.   DOI
3 Jackson, K.J., Wang, Y., and Collins, A.M. (2014). Human immunoglobulin classes and subclasses show variability in VDJ gene mutation levels. Immunol. Cell Biol. 92, 729-733.   DOI
4 Jung, E., Lee, J., Hong, H.J., Park, I., and Lee, Y. (2014). RNA recognition by a human antibody against brain cytoplasmic 200 RNA. RNA 20, 805-814.   DOI
5 Kawasaki, K., Minoshima, S., Nakato, E., Shibuya, K., Shintani, A., Schmeits, J.L., Wang, J., and Shimizu, N. (1997). One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res. 7, 250-261.   DOI
6 Kim, S.J., and Hong, H.J. (2012). Humanization by guided selections. Methods Mol. Biol. 907, 247-257.
7 Kugler, J., Wilke, S., Meier, D., Tomszak, F., Frenzel, A., Schirrmann, T., Dubel, S., Garritsen, H., Hock, B., Toleikis, L., et al. (2015). Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol. 15, 10.   DOI
8 Lloyd, C., Lowe, D., Edwards, B., Welsh, F., Dilks, T., Hardman, C., and Vaughan, T. (2009). Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens. Protein Eng. Des. Sel. 22, 159-168.
9 Market, E., and Papavasiliou, F.N. (2003). V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol. 1, E16.   DOI
10 Matsuda, F., and Honjo, T. (1996). Organization of the human immunoglobulin heavy-chain locus. Adv. Immunol. 62, 1-29.
11 McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552-554.   DOI
12 Muramatsu, M., Sankaranand, V.S., Anant, S., Sugai, M., Kinoshita, K., Davidson, N.O., and Honjo, T. (1999). Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470-18476.   DOI
13 Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553-563.   DOI
14 Oh, M.S., Kim, K.S., Jang, Y.K., Maeng, C.Y., Min, S.H., Jang, M.H., Yoon, S.O., Kim, J.H., and Hong, H.J. (2003). A new epitope tag from hepatitis B virus preS1 for immunodetection, localization and affinity purification of recombinant proteins. J. Immunol. Methods 283, 77-89.   DOI
15 Pallares, N., Frippiat, J.P., Giudicelli, V., and Lefranc, M.P. (1998). The human immunoglobulin lambda variable (IGLV) genes and joining (IGLJ) segments. Exp. Clin. Immunogenet. 15, 8-18.   DOI
16 Perelson, A.S., and Oster, G.F. (1979). Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-nonself discrimination. J. Theor. Biol. 81, 645-670.   DOI
17 Ponsel, D., Neugebauer, J., Ladetzki-Baehs, K., and Tissot, K. (2011). High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16, 3675-3700.   DOI
18 Rothlisberger, D., Honegger, A., and Pluckthun, A. (2005). Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J. Mol. Biol. 347, 773-789.   DOI
19 Schatz, D.G. (2004). V(D)J recombination. Immunol. Rev. 200, 5-11.   DOI
20 Schwimmer, L.J., Huang, B., Giang, H., Cotter, R.L., Chemla-Vogel, D.S., Dy, F.V., Tam, E.M., Zhang, F., Toy, P., Bohmann, D.J., et al. (2013). Discovery of diverse and functional antibodies from large human repertoire antibody libraries. J. Immunol. Methods 391, 60-71.   DOI
21 Selsted, M.E., and Ouellette, A.J. (2005). Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551-557.   DOI
22 Sharma, S., Byrne, H., and O'Kennedy, R.J. (2016). Antibodies and antibody-derived analytical biosensors. Essays Biochem. 60, 9-18.   DOI
23 Tiller, T., Schuster, I., Deppe, D., Siegers, K., Strohner, R., Herrmann, T., Berenguer, M., Poujol, D., Stehle, J., Stark, Y., et al. (2013). A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. mAbs 5, 445-470.   DOI
24 Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B., and Winter, G. (1992). The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol. 227, 776-798.   DOI
25 Raghunathan, G., Smart, J., Williams, J., and Almagro, J.C. (2012). Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens. J. Mol. Recognit. 25, 103-113.   DOI
26 Tomlinson, I.M., Walter, G., Jones, P.T., Dear, P.H., Sonnhammer, E.L., and Winter, G. (1996). The imprint of somatic hypermutation on the repertoire of human germline V genes. J. Mol. Biol. 256, 813-817.   DOI
27 Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature 302, 575-581.   DOI
28 Trepel, F. (1974). Number and distribution of lymphocytes in man. A critical analysis. Klin. Wochenschr. 52, 511-515.   DOI
29 Vargas-Madrazo, E., Lara-Ochoa, F., Ramirez-Benites, M.C., and Almagro, J.C. (1997). Evolution of the structural repertoire of the human V(H) and Vkappa germline genes. Int. Immunol. 9, 1801- 1815.   DOI
30 Wei, C.H., Lee, E.S., Jeon, J.Y., Heo, Y.S., Kim, S.J., Jeon, Y.H., Kim, K.H., Hong, H.J., and Ryu, S.E. (2011). Structural mechanism of the antigen recognition by the L1 cell adhesion molecule antibody A10- A3. FEBS Lett. 585, 153-158.   DOI
31 Barbie, V., and Lefranc, M.P. (1998). The human immunoglobulin kappa variable (IGKV) genes and joining (IGKJ) segments. Exp. Clin. Immunogenet. 15, 171-183.   DOI
32 Boder, E.T., and Wittrup, K.D. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553-557.   DOI
33 Bruggemann, M., Osborn, M.J., Ma, B., Hayre, J., Avis, S., Lundstrom, B., and Buelow, R. (2015). Human antibody production in transgenic animals. Arch. Immunol. Ther. Exp. (Warsz.) 63, 101-108.   DOI
34 Burkovitz, A., Sela-Culang, I., and Ofran, Y. (2014). Large-scale analysis of somatic hypermutations in antibodies reveals which structural regions, positions and amino acids are modified to improve affinity. The FEBS journal 281, 306-319.   DOI
35 Chaplin, D.D. (2003). 1. Overview of the immune response. J. Allergy Clin. Immunol. 111, S442-459.   DOI
36 Williams, S.C., Frippiat, J.P., Tomlinson, I.M., Ignatovich, O., Lefranc, M.P., and Winter, G. (1996). Sequence and evolution of the human germline V lambda repertoire. J. Mol. Biol. 264, 220-232.   DOI
37 Wu, T.T., and Kabat, E.A. (1970). An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211-250.   DOI
38 Yoon, S.O., Lee, T.S., Kim, S.J., Jang, M.H., Kang, Y.J., Park, J.H., Kim, K.S., Lee, H.S., Ryu, C.J., Gonzales, N.R., et al. (2006). Construction, affinity maturation, and biological characterization of an anti-tumorassociated glycoprotein-72 humanized antibody. J. Biol. Chem. 281, 6985-6992.   DOI
39 Zemlin, M., Klinger, M., Link, J., Zemlin, C., Bauer, K., Engler, J.A., Schroeder, H.W., Jr., and Kirkham, P.M. (2003). Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J. Mol. Biol. 334, 733-749.   DOI
40 Zhai, W., Glanville, J., Fuhrmann, M., Mei, L., Ni, I., Sundar, P.D., Van Blarcom, T., Abdiche, Y., Lindquist, K., Strohner, R., et al. (2011). Synthetic antibodies designed on natural sequence landscapes. Journal of molecular biology 412, 55-71.   DOI
41 Zhu, Z., and Dimitrov, D.S. (2009). Construction of a large naive human phage-displayed Fab library through one-step cloning. Methods Mol. Biol. 525, 129-142, xv.
42 Cho, S., Park, I., Kim, H., Jeong, M.S., Lim, M., Lee, E.S., Kim, J.H., Kim, S., and Hong, H.J. (2016). Generation, characterization and preclinical studies of a human anti-L1CAM monoclonal antibody that cross-reacts with rodent L1CAM. mAbs 8, 414-425.   DOI
43 Clark, L.A., Ganesan, S., Papp, S., and van Vlijmen, H.W. (2006). Trends in antibody sequence changes during the somatic hypermutation process. J. Immunol. 177, 333-340.   DOI
44 Coomber, D.W. (2002). Panning of antibody phage-display libraries. Standard protocols. Methods Mol. Biol. 178, 133-145.
45 Cox, J.P., Tomlinson, I.M., and Winter, G. (1994). A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur. J. Immunol. 24, 827-836.   DOI
46 Ecker, D.M., Jones, S.D., and Levine, H.L. (2015). The therapeutic monoclonal antibody market. mAbs 7, 9-14.   DOI
47 Geng, X., Kong, X., Hu, H., Chen, J., Yang, F., Liang, H., Chen, X., and Hu, Y. (2015). Research and development of therapeutic mAbs: An analysis based on pipeline projects. Hum. Vaccin. Immunother. 11, 2769-2776.   DOI
48 Glanville, J., Zhai, W., Berka, J., Telman, D., Huerta, G., Mehta, G.R., Ni, I., Mei, L., Sundar, P.D., Day, G.M., et al. (2009). Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc. Natl. Acad. Sci. USA. 106, 20216-20221.   DOI
49 Gram, H., Marconi, L.A., Barbas, C.F., 3rd, Collet, T.A., Lerner, R.A., and Kang, A.S. (1992). In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA. 89, 3576-3580.   DOI
50 Hanes, J., and Pluckthun, A. (1997). In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA. 94, 4937-4942.   DOI