Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.3.344

Neuronal Nitric Oxide Synthase-Immunoreactive Neurons In the Hamster Visual Cortex: Lack of Co-localization with Parvalbumin  

Jin Mi-Joo (Agrobiotechnology Education Center, NURI, Kyungpook National University)
Lee Jee-Eun (Department of Biology, College of Natural Science, Kyungpook National University)
Ye Eun-Ah (Department of Biology, College of Natural Science, Kyungpook National University)
Jeon Chang-Jin (Department of Biology, College of Natural Science, Kyungpook National University)
Publication Information
Journal of Life Science / v.15, no.3, 2005 , pp. 344-351 More about this Journal
Abstract
Nitric oxide (NO) and calcium-binding proteins occur in various types of cells in the central nervous system. They are important signaling and calcium buffering molecules, respectively. In the present study, using immunocytochemistry we examined the distribution and the co-localization pattern of neurons containing neuronal nitric oxide synthase (nNOS) and parvalbumin in the visual cortex of hamster. The overall number of parvalbumin-immunoreactive (IR) neurons was 17 times higher than that of the nNOS-IR neurons in the hamster visual cortex. The highest differences were found in layer V, where parvalbumin-IR neurons were 54.7 times more abundant than nNOS-IR neurons. Many nNOS- and parvalbumin-IR neurons were similar in size, shape, and manner of distribution in the visual cortex. However, two-color immunofluorescence revealed that no neurons in the hamster visual cortex expressed both nNOS and parvalbumin. The present results indicate that there are subtle species differences in the co-localization pattern between nNOS and calcium-binding proteins. The present results also suggest not only the heterogeneity and functional diversity of nNOS-IRneurons in the visual cortex, but also the importance of understanding animal diversity
Keywords
Nitric oxide; parvalbumin; distribution; cell type; double-labeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Leuba, G. and K. Saini. 1996. Calcium-binding proteins immunoreactivity in the human subcortical and cortical visual structures. Vis. Neurosci. 13, 997-1009   DOI   ScienceOn
2 Hendry, S and R. K. Carder. 1992. Organization and plasticity of GABA neurons and functional aspects. Adv. Exp. Med. BioI. 269, 57-66
3 Hogan, D and N. E. J. Berman. 1994. The development of parvalbumin and calbindin-D28K immunoreactive intemeurons in kitten visual cortical areas. Dev. Brain Res. 77, 1-21   DOI   ScienceOn
4 Hong, S. K., J. Y. Kim and C. J. Jeon. 2002. Immunocytochemical localization of calretinin in the superficial layers of the cat superior colliculus. Neurosci. Res. 44, 325-335   DOI   ScienceOn
5 Hubel, D. 1982. Explorations of the primary visual cortex, 1955-1978 (Noble lecture), Nature 299, 515-524
6 Hubel, D. 1988. Eye, Brain, and Vision. WH Freeman, New York
7 Jeon, C. J and H. J. Park. 1997. Immunocytochemicallocalization of calcium-binding protein calretinin containing neurons in cat visual cortex. Mol. Cells 7, 721-725
8 Dawson, V. L. and T. M. Dawson. 1996. Nitric oxide actions in neurochemistry. Neurochem. Int. 29, 97-110   DOI   ScienceOn
9 Leuba, G. and K. Saini. 1997. Co-localization of parvalbumin, calretinin, and calbindin D-28k in human cortical and subcortical visual structures. J. Chem. Neuroanat. 13, 41-52.   DOI   ScienceOn
10 Stichel, C. C., W. Singer, C. W. Heizmann and A. W. Norman. 1987. Immunohistochemical localization of calciumbinding proteins, parvalbumin and calbindin-D28k, in the adult and developing visual cortex of cats : a light and electron microscopic study. J. Comp. Neurol. 263, 563-577
11 Dhar, P., R. D. Mehra, V. Sidharthan and K. Sharma. 2001. Parvalbumin and calbindin D-28K immunoreactive neurons in area MT of rhesus monkey. Exp. Brain Res. 137, 141-149   DOI   ScienceOn
12 Glezer, I. I., P. R. Hof and P. J. Morgane. 1992. Calretininimmunoreactive neurons in the primary visual cortex of dolphin and human. Brain Res. 595, 181-188   DOI   ScienceOn
13 Glezer, I. I., P. R. Hof and P. J. Morgane. 1998. Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (fursiops truncatus) and macaque monkey (Macaca fasciularis). J. Chem. Neuroanat. 15, 203-237   DOI   ScienceOn
14 Gonchar, Y and A. Burkhalter. 1997. Three distinct families of GABAergic neurons in rat visual cortex. Cerebral Cortex 7, 347-358   DOI   ScienceOn
15 Gonchar, Y and A. Burkhalter. 1999. Differential subcellular localization of forward and feedback interareal inputs to parvalbumin expressing GABAergic neurons in rat visual cortex. J. Comp. Neurol. 406, 346-360   DOI   ScienceOn
16 Aoki, C. S., S. Fenstemaker, M. Lubin and C. G. Go. 1993. Nitric oxide synthase in the visual cortex of monocular monkeys as revealed by light and electron microscopic immunocytochemistry. Brain Res. 620, 97-113   DOI   ScienceOn
17 Goodchild, A. K. and P. R. Martin. 1998. The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of new world monkey, the marmoset, callithrix jacchus. Vis. Neurosci. 15, 625-642
18 Heizmann, C. W., J. Rohrenbeck and W. Kamphuis. 1990. Parvalbumin, molecular and functional aspects. Adv. Exp. Med. BioI. 269, 57-66   DOI
19 Hendry, S. H and R. K. Carder. 1993. Neurochemical compartmentation of monkey and human visual cortex : similarities and variations in calbindin immunoreactivity . across species. Vis. Neurosci. 10, 1109-1120   DOI   ScienceOn
20 Baimbridge, K. G., M. R. Celio and J. H. Rogers. 1992. Calcium-binding proteins in the nervous system. Trends Neurosci. 15, 303-307   DOI   ScienceOn
21 Berardi, N., T. Pizzorusso, G. M. Ratto and L. Maffei. 2003. Molecular basis of plasticity in the visual cortex. Trends Neurosci. 26, 369-378   DOI   ScienceOn
22 Xiao, Y. M, Y. C. Diao and K. F. So. 1996. A morphological study of neurons expressing NADPH diaphorase activity in the visual cortex of the Golden hamster. Brain Behav. Evol. 48, 221-230   DOI   ScienceOn
23 Bertini, G., Z. C. Peng and M. Bentivoglio. 1996. The chemical heterogeneity of cortical interneurons: .nitric oxide synthase vs. calbindin and parvalbumin immunoreactivity in the rat. Brain Res. Bull. 39, 261-266   DOI   ScienceOn
24 Bltimcke, L., P. R. Hof and J. H. Morrison. 1990. Distribution of parvalbumin immunoreactivity in the visual cortex of old world monkeys and humans. J. Comp. Neurol. 301, 417-432   DOI   ScienceOn
25 Cha, C. L., M. R. Uhm, D. H. Shin, Y. H. Chung and S. H. Baik. 1998. Immunocytochemical study on the distribution of NOS-immunoreactive neurons in the cerebral cortex of aged rats. NeuroReport 9, 2171-2174   DOI   ScienceOn
26 Gonchar, Y., J. Pang, B. Malitschek, B. Bettler and A. Burkhalter. 2001. Subcellular localization of GABA(B) receptor subunits in rat visual cortex. J. Comp. Neurol. 431, 182-197   DOI   ScienceOn
27 Cellerino, A., R. Siciliano, J. Domenici and J. Mafferi. 1992. Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex. Neuroscience 51, 749-753   DOI   ScienceOn
28 Daw, N. W., S. N. Reid and C. J. Beaver. 1999. Development and function of metabotropic glutamate receptors in cat visual cortex. J. Neurobiol. 41, 102-107   DOI   ScienceOn
29 Ichida, J. M., M. G. Rosa and V. A. Casagrande. 2000. Does the visual system of the flying fox resemble that of primates? The distribution of calcium-binding proteins in the primary visual pathway of Pteropus poliocephalus. J. Comp. Neurol. 417, 73-87   DOI   ScienceOn
30 Soares-Mota, M., J. Henze and R. Mendez-Otero. 2001. Nitric oxide synthase-positive neurons in the rat superior colliculus: colocalization of NOS with NMDAR1 glutamate receptor, GABA, and parvalbumin. J. Neurosic. Res. 64, 501-507   DOI   ScienceOn
31 Yan, Y. H., J. F. M. Van Brederode and A. E. Hendrickson. 1995. Developmental changes in calretinin expression in GABAergic and nonGABAergic neurons in monkey striate cortex. J. Comp. Neurol. 363, 78-92   DOI   ScienceOn
32 Yan, Y. H., J. F. M. Van Brederode and A. E. Hendrickson. 1995. Transient co-localization of calretinin, parvalbumin, and calbindin-D28K in developing visual cortex of monkey. J. Neurocytol. 24, 825-837   DOI   ScienceOn
33 Yousef, T., U. Neubacher, U. T. Eysel and M. Volgushev. 2004. Nitric oxide synthese in rat visual cortex: an immunohistochemical study. Brain Res. Protoc. 13, 57-67   DOI   ScienceOn
34 Meskenaite, V. 1997. Calretinin-irnmunoreactive local circuit neurons in area 17 of the cynomolgus monkey, macaca fascicularis. J. Comp. Neurol. 379, 113-132   DOI   ScienceOn
35 Leuba, G., R. Kraftsik and K. Sainin. 1998. Quantitative distribution of parvalbumin, calretinin, and calbindin D28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp. Neurol. 152, 278-291   DOI   ScienceOn
36 Luth, H. J., I. Blumcke, E. Winkelmann and M. R. Celio. 1993. The calcium-binding protein calretinin is localized in a subset of interneurons in the rat cerebral cortex: a light and electron immunohistochemical study. J. Hirnforsch. 34, 93-103
37 Luth, H. J., A. Hedlich, H. Hilbig, E. Winkelmann and B. Mayer. 1994. Morphological analyses of NADPH-diaphorasej nitric oxide synthase positive structures in human visual cortex. J. Neurocytol. 23, 770-782   DOI   ScienceOn
38 Park, H. J., S. K. Hong, J. H. Kong and C. J. Jeon. 1999. Localization of calcium-binding protein parvalbumin-immunoreactive neurons in mouse and hamster visual cortex. Mol. Cells 9, 542-547
39 Park, H. J., J. H. Kong, Y. S. Kang, W. M Park, S. A. Jeong, S. M Park, J. K. Um and C. J. Jeon. 2002. The distribution and morphology of calbindin D28k-, calretinin-immunoreactive neurons in the visual cortex of mouse. Mol. Cells 14, 143-149
40 Rogers, J., M. Khan and J. Ellis. 1990. Calretinin: a gene for a novel calcium-binding protein expressed principally in neuron. J. Cell BioI. 105, 1343-1353
41 Sandell, J. H. 1986. NADPH-diaphorase histochemistry in the macaque striate cortex. J. Comp. Neurol. 251, 388-397   DOI   ScienceOn
42 Wiencken, A. E and V. A. Casagrande. 2000. The distribution of NADPH diaphorase and nitric oxide synthase (NOS) in relation to the functional compartments of areas V1 and V2 of primate visual cortex. Cerebral Cortex 10, 499-511   DOI   ScienceOn
43 Demeulemeester, H., J. Arckens, F. Vandesande, G. A. Orban, C. W. Heizmann and R. Pochet. 1991. Calcium-binding proteins and neuropeptides as molecular markers of GABAergic intemeurons in the cat visual cortex. Exp. Brain Res. 84, 538-544
44 Hendrickson, A. E., J. F. M. Van Brederode, A. Mulligan and M. R. Celio. 1991. Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex. J. Comp. Neurol. 307, 626-646   DOI   ScienceOn
45 Jinno, S., N. Kinukawa and T. Kosaka. 2001. Morphometric multivariate analysis of GABAergic neurons containing calretinin and neuronal nitric oxide synthase in the mouse hippocampus. Brain Res. 900, 195-204   DOI   ScienceOn
46 Kiss, J. P. 2000. Role of nitric oxide in the regulation of monoaminergic neurotransmission. Brain Res. Bull. 52, 459-466   DOI   ScienceOn
47 Schafer, B. W and C. W. Heizmann. 1996. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21, 134-140   DOI
48 Jeon, C. J., J. K. Pyun and H. W. Yang. 1998. Calretinin and calbindin D28K immunoreactivity in the superficial layers of the rabbit superior colliculus. Neuroreport 9, 3847-3852   DOI   ScienceOn
49 Kang, Y. S., W. M. Park, J. K. Lim, S. Y. Kim and C. J. Jeon. 2002. Changes of calretinin, calbindin D28K and parvalbumin immunoreactive neurons in the superficial layers of the hamster superior colliculus following monocular enucleation. Neurosci. Left. 330, 104-108   DOI   ScienceOn
50 Lee, J. E., C. H. Ahn, J. Y. Lee, E. S. Chung and C. J. Jeon. 2004. Nitric oxide synthase and calcium-binding proteincontaining neurons in the hamster visual cortex. Mol. Cells 18, 30-39
51 Lee, J. E. and C. J. Jeon. 2005. lmmunocytochemicallocalization of nitric oxide synthase-containing neurons in mouse and rabbit visual cortex and co-localization with calciumbinding proteins. Mol. Cells 19, in press