Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.9.1097

The Biological Functions of Plant Long Noncoding RNAs  

Kim, Jee Hye (Department of Molecular Genetic Engineering, Dong-A University)
Heo, Jae Bok (Department of Molecular Genetic Engineering, Dong-A University)
Publication Information
Journal of Life Science / v.26, no.9, 2016 , pp. 1097-1104 More about this Journal
Abstract
With the development of next generation sequencing (NGS), large numbers of transcriptional molecules have been discovered. Most transcripts are non -coding RNAs (ncRNAs). Among them, long non-coding RNAs (lncRNAs) with more than 200 nucleotides represent functional RNA molecule that will not be translated into protein. In plants, lncRNAs are transcribed by RNA polymerase II (Pol II) or Pol III, Pol VI and Pol V. After transcription of these lncRNAs, more RNA processing mechanisms such as splicing and polyadenylation occurs. The expression of plant lncRNAs is very low and is tissue specific. However, these lncRNAs are strongly induced by specific external stimuli. Because different external stimuli including environmental stresses induce a large number of plant lncRNAs, these lncRNAs have been gradually considered as new regulatory factors of various biological and development processes such as epigenetic repression, chromatin modification, target mimicry, photomorphogenesis, protein relocalization, environmental stress response, pathogen infection in plants. Moreover, some lncRNAs act as precursor of short RNAs. Although a large number of lncRNAs have been predicted and identified in plants, our current understanding of the biological function of these lncRNAs is still limited and their detailed regulatory mechanisms should be elucidated continuously. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the molecular functions unraveled in plants.
Keywords
Environmental stress; long non-coding RNA; plant development; target mimicry; small RNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aubert, D., Chen, L., Moon, Y. H., Martin, D., Castle, L. A., Yang, C. H. and Sung, Z. R. 2001. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13, 1865-1875.   DOI
2 Bastow, R., Mylne, J. S., Lister, C., Lippman, Z., Martienssen, R. A. and Dean, C. 2004. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167.   DOI
3 Ben Amor, B., Wirth, S., Merchan, F., Laporte, P., d′Aubenton-Carafa, Y., Hirsch, J., Maizel, A., Mallory, A., Lucas, A., Deragon, J. M., Vaucheret, H., Thermes, C. and Crespi, M. 2009. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res. 19, 57-69.
4 Bi, X. 2012. Functions of chromatin remodeling factors in heterochromatin formation and maintenance. Sci. China Life Sci. 55, 89-96.   DOI
5 Campalans, A., Kondorosi, A. and Crespi, M. 2004. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16, 1047-1059.   DOI
6 Birney, E., et al. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799-816.   DOI
7 Boerner, S. and McGinnis, K. M. 2012. Computational identification and functional predictions of long noncoding RNA in Zea mays. PloS one 7, e43047.   DOI
8 Cabili, M. N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A. and Rinn, J. L. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes. Dev. 25, 1915-1927.   DOI
9 Chen, L. L. and Carmichael, G. G. 2010. Decoding the function of nuclear long non-coding RNAs. Curr. Opin. Cell Biol. 22, 357-364.   DOI
10 Chen, X. 2009. Small RNAs and their roles in plant development. Annu. Rev. Cell. Dev. Biol. 25, 21-44.   DOI
11 Crespi, M. D., Jurkevitch, E., Poiret, M., d′Aubenton-Carafa, Y., Petrovics, G., Kondorosi, E. and Kondorosi, A. 1994. enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J. 13, 5099-5112.
12 Ding, J., Shen, J., Mao, H., Xie, W., Li, X. and Zhang, Q. 2012a. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Mol. plant 5, 1210-1216.   DOI
13 Ding, J., Lu, Q., Ouyang, Y., Mao, H., Zhang, P., Yao, J., Xu, C., Li, X., Xiao, J. and Zhang, Q. 2012b. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. USA 109, 2654-2659.   DOI
14 Guttman, M., Donaghey, J., Carey, B. W., Garber, M., Grenier, J. K., Munson, G., Young, G., Lucas, A. B., Ach, R., Bruhn, L., Yang, X., Amit, I., Meissner, A., Regev, A., Rinn, J. L., Root, D. E. and Lander, E. S. 2011. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295-300.   DOI
15 Dinger, M. E., Pang, K. C., Mercer, T. R. and Mattick, J. S. 2008. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput. Biol. 4, e1000176.   DOI
16 Dinger, M. E., Pang, K. C., Mercer, T. R., Crowe, M. L., Grimmond, S. M. and Mattick, J. S. 2009. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 37, D122-126.   DOI
17 Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., Leyva, A., Weigel, D., Garcia, J. A. and Paz-Ares, J. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033-1037.   DOI
18 Helliwell, C. A., Robertson, M., Finnegan, E. J., Buzas, D. M. and Dennis, E. S. 2011. Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts. PloS One 6, e21513.   DOI
19 Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., Huarte, M., Zuk, O., Carey, B. W., Cassady, J. P., Cabili, M. N., Jaenisch, R., Mikkelsen, T. S., Jacks, T., Hacohen, N., Bernstein, B. E., Kellis, M., Regev, A., Rinn, J. L. and Lander, E. S. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223-227.   DOI
20 Hangauer, M. J., Vaughn, I. W. and McManus, M. T. 2013. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9, e1003569.   DOI
21 Heo, J. B. and Sung, S. 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79.   DOI
22 Kaneko, S., Li, G., Son, J., Xu, C. F., Margueron, R., Neubert, T. A. and Reinberg, D. 2010. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 24, 2615-2620.   DOI
23 Hirsch, J., Lefort, V., Vankersschaver, M., Boualem, A., Lucas, A., Thermes, C., d′Aubenton-Carafa, Y. and Crespi, M. 2006. Characterization of 43 non-protein-coding mRNA genes in Arabidopsis, including the MIR162a-derived transcripts. Plant Physiol. 140, 1192-1204.   DOI
24 Huang, H. and Jiao, R. 2012. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity. Sci. China Life Sci. 55, 15-19.   DOI
25 Jia, H., Osak, M., Bogu, G. K., Stanton, L. W., Johnson, R. and Lipovich, L. 2010. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16, 1478-1487.   DOI
26 Liu, J., Wang, H. and Chua, N. H. 2015. Long noncoding RNA transcriptome of plants. Plant Biotechnol. J. 13, 319-328.   DOI
27 Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermuller, J., Hofacker, I. L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H. and Gingeras, T. R. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484-1488.   DOI
28 Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B. E., van Oudenaarden, A., Regev, A., Lander, E. S. and Rinn, J. L. 2009. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667-11672.   DOI
29 Kim, E. D. and Sung, S. 2012. Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci. 17, 16-21.   DOI
30 Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H. and Kim, V. N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060.   DOI
31 Li, L., Wang, X., Stolc, V., Li, X., Zhang, D., Su, N., Tongprasit, W., Li, S., Cheng, Z., Wang, J. and Deng, X. W. 2006. Genome-wide transcription analyses in rice using tiling microarrays. Nature Genet. 38, 124-129.   DOI
32 Liu, C., Muchhal, U. S. and Raghothama, K. G. 1997. Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol. Biol. 33, 867-874.   DOI
33 Liu, J., Jung, C., Xu, J., Wang, H., Deng, S., Bernad, L., Arenas-Huertero, C. and Chua, N. H. 2012. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24, 4333-4345.   DOI
34 Nagano, T. and Fraser, P. 2011. No-nonsense functions for long noncoding RNAs. Cell 145, 178-181.   DOI
35 Ma, J., Yan, B., Qu, Y., Qin, F., Yang, Y., Hao, X., Yu, J., Zhao, Q., Zhu, D. and Ao, G. 2008. Zm401, a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize. J. Cell Biochem. 105, 136-146.   DOI
36 Marquardt, S., Raitskin, O., Wu, Z., Liu, F., Sun, Q. and Dean, C. 2014. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol. Cell 54, 156-165.   DOI
37 Martin, A. C., del Pozo, J. C., Iglesias, J., Rubio, V., Solano, R., de La Pena, A., Leyva, A. and Paz-Ares, J. 2000. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24, 559-567.   DOI
38 Matsui, A., Ishida, J., Morosawa, T., Okamoto, M., Kim, J. M., Kurihara, Y., Kawashima, M., Tanaka, M., To, T. K., Nakaminami, K., Kaminuma, E., Endo, T. A., Mochizuki, Y., Kawaguchi, S., Kobayashi, N., Shinozaki, K., Toyoda, T. and Seki, M. 2010. Arabidopsis tiling array analysis to identify the stress-responsive genes. Methods Mol. Biol. 639, 141-155.
39 Matvienko, M., Van de Sande, K., Yang, W. C., van Kammen, A., Bisseling, T. and Franssen, H. 1994. Comparison of soybean and pea ENOD40 cDNA clones representing genes expressed during both early and late stages of nodule development. Plant Mol. Biol. 26, 487-493.   DOI
40 Mylne, J. S., Barrett, L., Tessadori, F., Mesnage, S., Johnson, L., Bernatavichute, Y. V., Jacobsen, S. E., Fransz, P. and Dean, C. 2006. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc. Natl. Acad. Sci. USA 103, 5012-5017.   DOI
41 Nam, J. W. and Bartel, D. P. 2012. Long noncoding RNAs in C. elegans. Genome Res. 22, 2529-2540.   DOI
42 Shin, H., Shin, H. S., Chen, R. and Harrison, M. J. 2006. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J. 45, 712-726.   DOI
43 Ng, J. H. and Ng, H. H. 2010. LincRNAs join the pluripotency alliance. Nature Genet. 42, 1035-1036.   DOI
44 Okazaki, Y., et al. 2002. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563-573.   DOI
45 Orom, U. A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., Lai, F., Zytnicki, M., Notredame, C., Huang, Q., Guigo, R. and Shiekhattar, R. 2010. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46-58.   DOI
46 Pauli, A., Valen, E., Lin, M. F., Garber, M., Vastenhouw, N. L., Levin, J. Z., Fan, L., Sandelin, A., Rinn, J. L., Regev, A. and Schier, A. F. 2012. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22, 577-591.   DOI
47 Rehrauer, H., Aquino, C., Gruissem, W., Henz, S. R., Hilson, P., Laubinger, S., Naouar, N., Patrignani, A., Rombauts, S., Shu, H., Van de Peer, Y., Vuylsteke, M., Weigel, D., Zeller, G. and Hennig, L. 2010. AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. Plant Physiol. 152, 487-499.   DOI
48 Rohrig, H., Schmidt, J., Miklashevichs, E., Schell, J. and John, M. 2002. Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc. Natl. Acad. Sci. USA 99, 1915-1920.   DOI
49 Shuai, P., Liang, D., Zhang, Z., Yin, W. and Xia, X. 2013. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14, 233.   DOI
50 Sung, S., He, Y., Eshoo, T. W., Tamada, Y., Johnson, L., Nakahigashi, K., Goto, K., Jacobsen, S. E. and Amasino, R. M. 2006. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat. Genet. 38, 706-710.   DOI
51 Tang, L., Zhang, W., Su, B. and Yu, B. 2013. Long noncoding RNA HOTAIR is associated with motility, invasion and metastatic potential of metastatic melanoma. Biomed. Res. Int. 2013, 251098.
52 Wang, Y., Fan, X., Lin, F., He, G., Terzaghi, W., Zhu, D. and Deng, X. W. 2014b. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc. Natl. Acad. Sci. USA 111, 10359-10364.   DOI
53 Turck, F., Roudier, F., Farrona, S., Martin-Magniette, M. L., Guillaume, E., Buisine, N., Gagnot, S., Martienssen, R. A., Coupland, G. and Colot, V. 2007. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 3, e86.   DOI
54 Wang, H., Chung, P. J., Liu, J., Jang, I. C., Kean, M. J., Xu, J. and Chua, N. H. 2014a. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res. 24, 444-453.   DOI
55 Wang, K. C. and Chang, H. Y. 2011. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904-914.   DOI
56 Wierzbicki, A. T., Haag, J. R. and Pikaard, C. S. 2008. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635-648.   DOI
57 Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C. J., Rogers, J. and Bahler, J. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239-1243.   DOI
58 Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. and Lee, J. T. 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750-756.   DOI
59 Wu, H. J., Wang, Z. M., Wang, M. and Wang, X. J. 2013. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol. 161, 1875-1884.   DOI
60 Wu, J., Okada, T., Fukushima, T., Tsudzuki, T., Sugiura, M. and Yukawa, Y. 2012. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol. 9, 302-313.   DOI
61 Yang, W. C., Katinakis, P., Hendriks, P., Smolders, A., de Vries, F., Spee, J., van Kammen, A., Bisseling, T. and Franssen, H. 1993. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J. 3, 573-585.   DOI
62 Zhang, X., Germann, S., Blus, B. J., Khorasanizadeh, S., Gaudin, V. and Jacobsen, S. E. 2007. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat. Struct. Mol. Biol 14, 869-871.   DOI
63 Zhang, Y. C. and Chen, Y. Q. 2013. Long noncoding RNAs: new regulators in plant development. Biochem. Biophys. Res. Commun. 436, 111-114.   DOI
64 Zhu, Q. H., Stephen, S., Taylor, J., Helliwell, C. A. and Wang, M. B. 2014. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol. 201, 574-584.   DOI