DOI QR코드

DOI QR Code

Odorant Receptors Containing Conserved Amino Acid Sequences in Transmembrane Domain 7 Display Distinct Expression Patterns in Mammalian Tissues

  • Ryu, Sang Eun (Department of Cognitive and Brain Sciences, Graduate school, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Shim, Tammy (Department of Cognitive and Brain Sciences, Graduate school, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Yi, Ju-Yeon (Department of Cognitive and Brain Sciences, Graduate school, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Kim, So Yeun (Department of Cognitive and Brain Sciences, Graduate school, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Park, Sun Hwa (Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea, College of Medicine) ;
  • Kim, Sung Won (Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea, College of Medicine) ;
  • Ronnett, Gabriele V. (Departments of Neuroscience and Neurology, The Johns Hopkins University School of Medicine) ;
  • Moon, Cheil (Department of Cognitive and Brain Sciences, Graduate school, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
  • Received : 2017.09.19
  • Accepted : 2017.10.23
  • Published : 2017.12.31

Abstract

Mammalian genomes are well established, and highly conserved regions within odorant receptors that are unique from other G-protein coupled receptors have been identified. Numerous functional studies have focused on specific conserved amino acids motifs; however, not all conserved motifs have been sufficiently characterized. Here, we identified a highly conserved 18 amino acid sequence motif within transmembrane domain seven (CAS-TM7) which was identified by aligning odorant receptor sequences. Next, we investigated the expression pattern and distribution of this conserved amino acid motif among a broad range of odorant receptors. To examine the localization of odorant receptor proteins, we used a sequence-specific peptide antibody against CAS-TM7 which is specific to odorant receptors across species. The specificity of this peptide antibody in recognizing odorant receptors has been confirmed in a heterologous in vitro system and a rat-based in vivo system. The CAS-TM7 odorant receptors localized with distinct patterns at each region of the olfactory epithelium; septum, endoturbinate and ectoturbinate. To our great interests, we found that the CAS-TM7 odorant receptors are primarily localized to the dorsal region of the olfactory bulb, coinciding with olfactory epithelium-based patterns. Also, these odorant receptors were ectopically expressed in the various non-olfactory tissues in an evolutionary constrained manner between human and rats. This study has characterized the expression patterns of odorant receptors containing particular amino acid motif in transmembrane domain 7, and which led to an intriguing possibility that the conserved motif of odorant receptors can play critical roles in other physiological functions as well as olfaction.

Keywords

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Asai, H., Kasai, H., Matsuda, Y., Yamazaki, N., Nagawa, F., Sakano, H., and Tsuboi, A. (1996). Genomic structure and transcription of a murine odorant receptor gene: differential initiation of transcription in the olfactory and testicular cells. Biochem. Biophys. Res. Commun. 221, 240-247. https://doi.org/10.1006/bbrc.1996.0580
  3. Barnea, G., O'Donnell, S., Mancia, F., Sun, X., Nemes, A., Mendelsohn, M., and Axel, R. (2004). Odorant receptors on axon termini in the brain. Science 304, 1468. https://doi.org/10.1126/science.1096146
  4. Braun, T., Voland, P., Kunz, L., Prinz, C., and Gratzl, M. (2007). Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology 132, 1890-1901. https://doi.org/10.1053/j.gastro.2007.02.036
  5. Buck, L., and Axel, R. (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175-187. https://doi.org/10.1016/0092-8674(91)90418-X
  6. Busse, D., Kudella, P., Gruning, N.M., Gisselmann, G., Stander, S., Luger, T., Jacobsen, F., Steinstrasser, L., Paus, R., Gkogkolou, P., et al. (2014). A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J. Invest. Dermatol. 134, 2823-2832. https://doi.org/10.1038/jid.2014.273
  7. De la Cruz, O., Blekhman, R., Zhang, X., Nicolae, D., Firestein, S., and Gilad, Y. (2009). A signature of evolutionary constraint on a subset of ectopically expressed olfactory receptor genes. Mol. Biol. Evol. 26, 491-494.
  8. de March, C.A., Kim, S.K., Antonczak, S., Goddard, W.A., 3rd, and Golebiowski, J. (2015). G protein-coupled odorant receptors: From sequence to structure. Protein Sci. 24, 1543-1548. https://doi.org/10.1002/pro.2717
  9. Durzynski, L., Gaudin, J.C., Myga, M., Szydlowski, J., Gozdzicka-Jozefiak, A., and Haertle, T. (2005). Olfactory-like receptor cDNAs are present in human lingual cDNA libraries. Biochem. Biophys. Res. Commun. 333, 264-272. https://doi.org/10.1016/j.bbrc.2005.05.085
  10. Feinstein, P., and Mombaerts, P. (2004). A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817-831. https://doi.org/10.1016/j.cell.2004.05.011
  11. Feldmesser, E., Olender, T., Khen, M., Yanai, I., Ophir, R., and Lancet, D. (2006). Widespread ectopic expression of olfactory receptor genes. BMC Genomics 7, 121. https://doi.org/10.1186/1471-2164-7-121
  12. Flegel, C., Manteniotis, S., Osthold, S., Hatt, H., and Gisselmann, G. (2013). Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS One 8, e55368. https://doi.org/10.1371/journal.pone.0055368
  13. Flegel, C., Vogel, F., Hofreuter, A., Schreiner, B.S., Osthold, S., Veitinger, S., Becker, C., Brockmeyer, N.H., Muschol, M., Wennemuth, G., et al. (2015). Characterization of the Olfactory Receptors Expressed in Human Spermatozoa. Front. Mol. Biosci. 2, 73.
  14. Fukuda, N., and Touhara, K. (2006). Developmental expression patterns of testicular olfactory receptor genes during mouse spermatogenesis. Genes Cells 11, 71-81.
  15. Gaillard, I., Rouquier, S., Chavanieu, A., Mollard, P., and Giorgi, D. (2004). Amino-acid changes acquired during evolution by olfactory receptor 912-93 modify the specificity of odorant recognition. Hum. Mol. Genet. 13, 771-780. https://doi.org/10.1093/hmg/ddh086
  16. Garcia-Esparcia, P., Schluter, A., Carmona, M., Moreno, J., Ansoleaga, B., Torrejon-Escribano, B., Gustincich, S., Pujol, A., and Ferrer, I. (2013). Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J. Neuropathol. Exp. Neurol. 72, 524-539. https://doi.org/10.1097/NEN.0b013e318294fd76
  17. Gaudin, J.C., Breuils, L., and Haertle, T. (2001). New GPCRs from a human lingual cDNA library. Chem. Senses 26, 1157-1166. https://doi.org/10.1093/chemse/26.9.1157
  18. Goto, T., Salpekar, A., and Monk, M. (2001). Expression of a testisspecific member of the olfactory receptor gene family in human primordial germ cells. Mol. Hum. Reprod. 7, 553-558. https://doi.org/10.1093/molehr/7.6.553
  19. Gu, X., Karp, P.H., Brody, S.L., Pierce, R.A., Welsh, M.J., Holtzman, M.J., and Ben-Shahar, Y. (2014). Chemosensory functions for pulmonary neuroendocrine cells. Am. J. Respir. Cell Mol. Biol. 50, 637-646. https://doi.org/10.1165/rcmb.2013-0199OC
  20. Hanchate, N.K., Kondoh, K., Lu, Z., Kuang, D., Ye, X., Qiu, X., Pachter, L., Trapnell, C., and Buck, L.B. (2015). Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 350, 1251-1255. https://doi.org/10.1126/science.aad2456
  21. Ichimura, A., Kadowaki, T., Narukawa, K., Togiya, K., Hirasawa, A., and Tsujimoto, G. (2008). In silico approach to identify the expression of the undiscovered molecules from microarray public database: identification of odorant receptors expressed in non-olfactory tissues. Naunyn Schmiedebergs Arch. Pharmacol. 377, 159-165. https://doi.org/10.1007/s00210-007-0255-6
  22. Imai, T., Suzuki, M., and Sakano, H. (2006). Odorant receptorderived cAMP signals direct axonal targeting. Science 314, 657-661. https://doi.org/10.1126/science.1131794
  23. Kaji, I., Karaki, S., and Kuwahara, A. (2011). Effects of luminal thymol on epithelial transport in human and rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G1132-1143. https://doi.org/10.1152/ajpgi.00503.2010
  24. Kalbe, B., Knobloch, J., Schulz, V.M., Wecker, C., Schlimm, M., Scholz, P., Jansen, F., Stoelben, E., Philippou, S., Hecker, E., et al. (2016). Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells. Front. Physiol. 7, 339.
  25. Kato, A., Katada, S., and Touhara, K. (2008). Amino acids involved in conformational dynamics and G protein coupling of an odorant receptor: targeting gain-of-function mutation. J. Neurochem. 107, 1261-1270. https://doi.org/10.1111/j.1471-4159.2008.05693.x
  26. Kidd, M., Modlin, I.M., Gustafsson, B.I., Drozdov, I., Hauso, O., and Pfragner, R. (2008). Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G260-272. https://doi.org/10.1152/ajpgi.00056.2008
  27. Kobayakawa, K., Kobayakawa, R., Matsumoto, H., Oka, Y., Imai, T., Ikawa, M., Okabe, M., Ikeda, T., Itohara, S., Kikusui, T., et al. (2007). Innate versus learned odour processing in the mouse olfactory bulb. Nature 450, 503-508. https://doi.org/10.1038/nature06281
  28. Margolis, F. (1980). A marker protein for the olfactory chemoreceptor neuron. In Proteins of the nervous system, R.A. Bradshaw, D. Schneider eds. (Newyork, America: Raven Press), pp. 59-84.
  29. Massberg, D., Simon, A., Haussinger, D., Keitel, V., Gisselmann, G., Conrad, H., and Hatt, H. (2015). Monoterpene (-)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor. Arch. Biochem. Biophys. 566, 100-109. https://doi.org/10.1016/j.abb.2014.12.004
  30. Miyamichi, K., Serizawa, S., Kimura, H.M., and Sakano, H. (2005). Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J. Neurosci. 25, 3586-3592. https://doi.org/10.1523/JNEUROSCI.0324-05.2005
  31. Neuhaus, E.M., Mashukova, A., Barbour, J., Wolters, D., and Hatt, H. (2006). Novel function of beta-arrestin2 in the nucleus of mature spermatozoa. J. Cell. Sci. 119, 3047-3056. https://doi.org/10.1242/jcs.03046
  32. Neuhaus, E.M., Zhang, W., Gelis, L., Deng, Y., Noldus, J., and Hatt, H. (2009). Activation of an olfactory receptor inhibits proliferation of prostate cancer cells. J. Biol. Chem. 284, 16218-16225. https://doi.org/10.1074/jbc.M109.012096
  33. Nguyen, M.Q., Zhou, Z., Marks, C.A., Ryba, N.J., and Belluscio, L. (2007). Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131, 1009-1017. https://doi.org/10.1016/j.cell.2007.10.050
  34. Pal, K., Badgandi, H., and Mukhopadhyay, S. (2015). Studying G protein-coupled receptors: immunoblotting, immunoprecipitation, phosphorylation, surface labeling, and cross-linking protocols. Methods Cell Biol. 127, 303-322.
  35. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., et al. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739-745. https://doi.org/10.1126/science.289.5480.739
  36. Park, C., Choi, W.S., Kwon, H., and Kwon, Y.K. (2001). Temporal and spatial expression of neurotrophins and their receptors during male germ cell development. Mol. Cells 12, 360-367.
  37. Persson, H., Ayer-Le Lievre, C., Soder, O., Villar, M.J., Metsis, M., Olson, L., Ritzen, M., and Hokfelt, T. (1990). Expression of beta-nerve growth factor receptor mRNA in Sertoli cells downregulated by testosterone. Science 247, 704-707. https://doi.org/10.1126/science.2154035
  38. Pilpel, Y., and Lancet, D. (1999). The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Sci. 8, 969-977. https://doi.org/10.1110/ps.8.5.969
  39. Probst, W.C., Snyder, L.A., Schuster, D.I., Brosius, J., and Sealfon, S.C. (1992). Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 11, 1-20. https://doi.org/10.1089/dna.1992.11.1
  40. Ressler, K.J., Sullivan, S.L., and Buck, L.B. (1994). Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245-1255. https://doi.org/10.1016/0092-8674(94)90015-9
  41. Ronnett, G.V., Hester, L.D., and Snyder, S.H. (1991). Primary culture of neonatal rat olfactory neurons. J. Neurosci. 11, 1243-1255. https://doi.org/10.1523/JNEUROSCI.11-05-01243.1991
  42. Serizawa, S., Miyamichi, K., and Sakano, H. (2004). One neuron-one receptor rule in the mouse olfactory system. Trends Genet. 20, 648-653. https://doi.org/10.1016/j.tig.2004.09.006
  43. Serizawa, S., Miyamichi, K., Takeuchi, H., Yamagishi, Y., Suzuki, M., and Sakano, H. (2006). A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127, 1057-1069. https://doi.org/10.1016/j.cell.2006.10.031
  44. Sherman, M.A., and Lesne, S.E. (2011). Detecting abeta*56 oligomers in brain tissues. Methods Mol. Biol. 670, 45-56.
  45. Spehr, J., Gelis, L., Osterloh, M., Oberland, S., Hatt, H., Spehr, M., and Neuhaus, E.M. (2011). G protein-coupled receptor signaling via Src kinase induces endogenous human transient receptor potential vanilloid type 6 (TRPV6) channel activation. J. Biol. Chem. 286, 13184-13192. https://doi.org/10.1074/jbc.M110.183525
  46. Spehr, M., Gisselmann, G., Poplawski, A., Riffell, J.A., Wetzel, C.H., Zimmer, R.K., and Hatt, H. (2003). Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054-2058. https://doi.org/10.1126/science.1080376
  47. Strotmann, J., Levai, O., Fleischer, J., Schwarzenbacher, K., and Breer, H. (2004). Olfactory receptor proteins in axonal processes of chemosensory neurons. J. Neurosci. 24, 7754-7761. https://doi.org/10.1523/JNEUROSCI.2588-04.2004
  48. Takeuchi, H., Inokuchi, K., Aoki, M., Suto, F., Tsuboi, A., Matsuda, I., Suzuki, M., Aiba, A., Serizawa, S., Yoshihara, Y., et al. (2010). Sequential arrival and graded secretion of Sema3F by olfactory neuron axons specify map topography at the bulb. Cell 141, 1056-1067. https://doi.org/10.1016/j.cell.2010.04.041
  49. Vanderhaeghen, P., Schurmans, S., Vassart, G., and Parmentier, M. (1993). Olfactory receptors are displayed on dog mature sperm cells. J. Cell Biol. 123, 1441-1452. https://doi.org/10.1083/jcb.123.6.1441
  50. Vassar, R., Ngai, J., and Axel, R. (1993). Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74, 309-318. https://doi.org/10.1016/0092-8674(93)90422-M
  51. Veitinger, T., Riffell, J.R., Veitinger, S., Nascimento, J.M., Triller, A., Chandsawangbhuwana, C., Schwane, K., Geerts, A., Wunder, F., Berns, M.W., et al. (2011). Chemosensory Ca2+ dynamics correlate with diverse behavioral phenotypes in human sperm. J. Biol. Chem. 286, 17311-17325. https://doi.org/10.1074/jbc.M110.211524
  52. Walensky, L.D., Roskams, A.J., Lefkowitz, R.J., Snyder, S.H., and Ronnett, G.V. (1995). Odorant receptors and desensitization proteins colocalize in mammalian sperm. Mol. Med. 1, 130-141.
  53. Wu, C., Jia, Y., Lee, J.H., Kim, Y., Sekharan, S., Batista, V.S., and Lee, S.J. (2015). Activation of OR1A1 suppresses PPAR-gamma expression by inducing HES-1 in cultured hepatocytes. Int. J. Biochem. Cell Biol. 64, 75-80. https://doi.org/10.1016/j.biocel.2015.03.008
  54. Zhang, X., De la Cruz, O., Pinto, J.M., Nicolae, D., Firestein, S., and Gilad, Y. (2007). Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biol. 8, R86. https://doi.org/10.1186/gb-2007-8-5-r86
  55. Zhao, W., Ho, L., Varghese, M., Yemul, S., Dams-O'Connor, K., Gordon, W., Knable, L., Freire, D., Haroutunian, V., and Pasinetti, G.M. (2013). Decreased level of olfactory receptors in blood cells following traumatic brain injury and potential association with tauopathy. J. Alzheimers Dis. 34, 417-429. https://doi.org/10.3233/JAD-121894

Cited by

  1. Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans vol.42, pp.1, 2017, https://doi.org/10.14348/molcells.2018.0380