• Title/Summary/Keyword: Functional matrix

Search Result 574, Processing Time 0.033 seconds

Nanotechnology Applications in Functional Foods; Opportunities and Challenges

  • Singh, Harjinder
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Increasing knowledge on the link between diet and human health has generated a lot of interest in the development of functional foods. However, several challenges, including discovering of beneficial compounds, establishing optimal intake levels, and developing adequate food delivering matrix and product formulations, need to be addressed. A number of new processes and materials derived from nanotechnology have the potential to provide new solutions in many of these fronts. Nanotechnology is concerned with the manipulation of materials at the atomic and molecular scales to create structures that are less than 100 nm in size in one dimension. By carefully choosing the molecular components, it seems possible to design particles with different surface properties. Several food-based nanodelivery vehicles, such as protein-polysaccharide coacervates, multiple emulsions, liposomes and cochleates have been developed on a laboratory scale, but there have been very limited applications in real food systems. There are also public concerns about potential negative effects of nanotechnology-based delivery systems on human health. This paper provides an overview of the new opportunities and challenges for nanotechnology-based systems in future functional food development.

Application of Axiomatic Design Theory in Manufacturing System Design (공리적 설계 기법을 이용한 생산시스템 설계 지원 방안에 대한 고찰)

  • 백태진;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.82-86
    • /
    • 2004
  • To cope with the challenge from global market characterized by frequent changes in requirements, manufacturing enterprise should be able to promptly adjust its manufacturing system accordingly. Therefore, it is important to provide manufacturing system designer with an appropriate methodology to (re-)design a manufacturing system subject to requirements change. Axiomatic design theory focuses design activity mainly on functional consideration rather than physical, and has been known as effective especially in the conceptual design phase. This paper introduces an approach to apply the axiomatic design principle to manufacturing system design. It is shown that a new design solution can be reached quickly by finding design parameters for the added or revised functional requirements and thus achieving a set of functional requirements as well as design parameters that satisfy the independence axiom. Some illustrative examples are also given.

  • PDF

A Study of Matrix Model for Core Quality Measurement based on the Structure and Function Diagnosis of IoT Networks (구조 및 기능 진단을 토대로 한 IoT네트워크 핵심품질 매트릭스 모델 연구)

  • Noh, SiChoon;Kim, Jeom Goo
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.45-51
    • /
    • 2014
  • The most important point in the QoS management system to ensure the quality of the IoT system design goal is quality measurement system and the quality evaluation system. This research study is a matrix model for the IoT based on key quality measures by diagnosis system structure and function. Developing for the quality metrics measured Internet of Things environment will provide the foundation for the Internet of Things quality measurement/analysis. IoT matrix system for quality evaluation is a method to describe the functional requirements and the quality requirements in a single unified table for quality estimation performed. Comprehensive functional requirements and quality requirements by assessing the association can improve the reliability and usability evaluation. When applying the proposed method IoT quality can be improved while reducing the QoS signaling, the processing, the basis for more efficient quality assurances as a whole.

Recyclable Polymeric Composite with High Thermal Conductivity (재활용 가능한 고방열 고분자 복합소재 개발)

  • Shin, Haeun;Kim, Chae Bin;Ahn, Seokhoon;Kim, Doohun;Lim, Jong Kuk;Goh, Munju
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.319-326
    • /
    • 2019
  • To address tremendous needs for developing efficiently heat dissipating material with lightweights, a new class of polymer possessing recyclable and malleable characteristics was synthesized for incorporating model functional hexagonal boron nitride (h-BN) filler. A good interfacial affinity between the polymer matrix and the filler along with shear force generated upon manufacturing the composite yielded the final product bearing highly aligned filler via simple hot pressing method. For this reason, the composite exhibited a high thermal conductivity of 13.8 W/mK. Moreover, it was possible to recover the h-BN from the composite without physical/chemical denaturation of the filler by chemically depolymerizing the matrix, thus the recovered filler can be re-used in the future. We believe this polymer could be beneficial as matrix for incorporating many other functional fillers, thus they may find applications in various polymeric composite related fields.

BONE REGENERATION WITH MMP SENSITIVE HYALURONIC ACID-BASED HYDROGEL, rhBMP-2 AND NANOPARTICLES IN RAT CALVARIAL CRITICAL SIZE DEFECT(CSD) MODEL (Matrix metalloproteinase(MMP) sensitive hyaluronic acid hydrogel-nanoparticle complex와 rhBMP-2를 이용한 골재생)

  • Nam, Jeong-Hun;Park, Jong-Chul;Yu, Sang-Bae;Chung, Yong-Il;Tae, Gi-Yoong;Kim, Jung-Ju;Park, Yong-Doo;Jahng, Jeong-Won;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.3
    • /
    • pp.137-145
    • /
    • 2009
  • As an efficient controlled release system for rhBMP-2, a functional nanoparticle-hydrogel complex, incorporated with matrix metalloproteinase(MMP) sensitive peptide cross-linker, was developed and used as a bone transplant. In vivo bone formation was evaluated by soft x-ray, histology, alkaline phosphatase(ALP) activity and mineral contents analysis, based on the rat calvarial critical size defect(8mm in diameter) model. Significantly, effective bone regeneration was achieved with the rhBMP-2 loaded MMP sensitive hyaluronic acid(HA) based hydrogel-Nanoparticles(NP) complex, as compared to only MMP HA, the MMP HA-NP without rhBMP-2, or even with the rhBMP-2. These improvements included the formation pattern of bone and functional marrow, the degree of calcium quantification, and the ALP activity. These results indicate that the MMP sensitive HA with nano-particle complex can be a promising candidate for a new bone defect replacement matrix, and an enhanced rhBMP-2 scaffold.

The Functionalization and Preparation Methods of Carbon Nanotube-Polymer Composites: A Review (탄소나노튜브-폴리머 복합체의 기능화와 제조방법)

  • Oh, Won-Chun;Ko, Weon-Bae;Zhang, Feng-Jun
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.80-86
    • /
    • 2010
  • Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical, and magnetic properties as well as nanometer scale diameter and high aspect ratio, which make them an ideal reinforcing agent for high strength polymer composites. The functionalized CNTs are believed to be very promising in the fields such as preparation of functional and composite materials. CNT-Polymer composites are expected to have good processability characteristics of the polymer and excellent functional properties of the CNTs. However, since CNTs usually form stabilized bundles due to Van der Waals interactions, are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNT-reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, and the alignment and control of the CNTs in the matrix. There are several methods for the dispersion of nanotubes in the polymer matrix such as solution mixing, bulk mixing, melt mixing, in-situ polymerization and chemical functionalization of the carbon nanotubes, etc. These methods and preparation of high performance CNT-polymer composites are described in this review.

Group Average-consensus and Group Formation-consensus for First-order Multi-agent Systems (일차 다개체 시스템의 그룹 평균 상태일치와 그룹 대형 상태일치)

  • Kim, Jae Man;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1225-1230
    • /
    • 2014
  • This paper investigates the group average-consensus and group formation-consensus problems for first-order multi-agent systems. The control protocol for group consensus is designed by considering the positive adjacency elements. Since each intra-group Laplacian matrix cannot be satisfied with the in-degree balance because of the positive adjacency elements between groups, we decompose the Laplacian matrix into an intra-group Laplacian matrix and an inter-group Laplacian matrix. Moreover, average matrices are used in the control protocol to analyze the stability of multi-agent systems with a fixed and undirected communication topology. Using the graph theory and the Lyapunov functional, stability analysis is performed for group average-consensus and group formation-consensus, respectively. Finally, some simulation results are presented to validate the effectiveness of the proposed control protocol for group consensus.

Band-Broadening Design of the Butler Matrix for V2X - 5.9 GHz Communication (V2X 차량 통신용 5.9 GHz 버틀러 매트릭스의 광대역화 설계)

  • Han, Dajung;Lee, Changhyeong;Park, Heejun;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.107-113
    • /
    • 2016
  • In this paper, we suggest a design method of a wide-band Butler matrix working at 5.9 GHz for V2X communication antennas. Since V2X communication needs beam-forming and beam-steering antennas to make transportation systems, mobile comm platforms, saturated frequency-resources, and signal TX-and-RX smart, multi-functional, resolved, and efficient utmost, respectively, the proper Butler matrix and its radiating elements as a low-profile geometry are realized. The constitutive components of the basic Butler matrix of a narrow band are designed first. And then, it is extended to a wide-band version to make its frequency-shift less affected by the event of the antenna system being mounted on a car body. The beam-forming and beam-steering performance is presented as the common feature tagged along with the different bandwidths of the frequency responses as the comparison between the narrow- and wide-band cases.

Mechanical Properties of Carbon Nanotube/Cu Nanocomposites Produced by Powder Equal Channel Angular Pressing (분말 ECAP 공정으로 제조된 탄소나노튜브/Cu 나노복합재료의 기계적 성질)

  • Yoon, Seung-Chae;Jeong, Young-Gi;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.360-365
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nano technologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (${\appros}\;several\;nm$) as well as their high Young's modulus (${\appros}1\;TPa$), tensile strength (${\appros}\;200\;GPa$) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. Although extensive researches have been performed on the electrical, mechanical and functional properties of CNTs, there are not many successful results on the mechanical properties of CNT dispersed nanocomposites. In this paper, we applied equal channel angular pressing for consolidation of CNT/Cu powder mixtures. We also investigated the hardness and microstructures of CNT/Cu nanocomposites used experimental for metal matrix composites.

An Application of the Localized Finite Element Method to 3-dimensional Free Surface Wave Problems (3차원 자유표면파 문제에서의 국소유한요소법의 응용)

  • K.J.,Bai;Se-Eun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.1-8
    • /
    • 1987
  • In this paper, the localized finite element method(LFEM) is applied to 3-dimensional ship motion problems in water of infinite depth. The LFEM used here is based on the functional constructed by Bai & Yeung(1974). To test the present numerical scheme, a few vertical axisymmetric bodies are treated by general 3-dimensional formulation. The computed results of hydrodynamic coefficients for a few vertical spheroids and vertical circular cylinders show good agreement with results obtained by others. The advantages of the present numerical method compared with the method of integral equation are as follows; (i) The cumbersome existence of irregular frequencies in the method of conventional integral equation is removed. (ii) The final matrix is banded and symmetric and the computation of the matrix elements is comparatively easier, whereas the size of the matrix in the present scheme is much larger. (iii) In the future research, it is possible to accommodate with the nonlinear exact free surface boundary condition in the localized finite element subdomain, whereas the linear solution is assumed in the truncated(far field) subdomain.

  • PDF