DOI QR코드

DOI QR Code

Mechanical Properties of Carbon Nanotube/Cu Nanocomposites Produced by Powder Equal Channel Angular Pressing

분말 ECAP 공정으로 제조된 탄소나노튜브/Cu 나노복합재료의 기계적 성질

  • Published : 2006.08.01

Abstract

Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nano technologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (${\appros}\;several\;nm$) as well as their high Young's modulus (${\appros}1\;TPa$), tensile strength (${\appros}\;200\;GPa$) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. Although extensive researches have been performed on the electrical, mechanical and functional properties of CNTs, there are not many successful results on the mechanical properties of CNT dispersed nanocomposites. In this paper, we applied equal channel angular pressing for consolidation of CNT/Cu powder mixtures. We also investigated the hardness and microstructures of CNT/Cu nanocomposites used experimental for metal matrix composites.

Keywords

References

  1. Y. S. Kim, M. J. Verrilli, 1995, Characterization of thermomechanical fatique failure behavior of tungsten copper matrix composiste, J. Kor. Inst. Met. Mater., Vol. 33, pp. 525-530
  2. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, 1985, Buckminsterfullerene, Nature, Vol. 318, pp. 162-163 https://doi.org/10.1038/318162a0
  3. S. Iijima, 1991, Helical microtubules of graphitic carbon, Nature, Vol. 354, pp. 56-58 https://doi.org/10.1038/354056a0
  4. K. T. Lau, D. Hui, 2002, The revolutionary creation of new advanced materials-carbon nanotube composites, Composites B, Vol. 33, pp. 263-277 https://doi.org/10.1016/S1359-8368(02)00012-4
  5. D. Raabe, U. Hangen, 1996, Correlation of microstructure and type superconductivity of a heavily cold rolled Cu-20 mass % Nb in situ composite, Acta Mater., Vol. 44, pp. 953-961 https://doi.org/10.1016/1359-6454(95)00239-1
  6. J. S. Song, S. I. Hong, 2001, Mechanical and electrical properties of Cu-Cr base microcomposite plates fabricated by the deformation processing, J. Kor. Inst. Met. Mater., Vol. 39, pp. 778-786
  7. S. Ohsaki, K. Yamazaki, K. Hono, 2003, Alloying of immiscible phase in wire-drawn Cu-Ag filamentary composites, Scripta Mater., Vol. 48, pp. 1596-1574
  8. V. M. Segal, K. T. Hartwig, R. E. Goforth, 1997, In situ composites processed by simple shear. Mater. Sci. Eng. A, Vol. 224, pp. 107-115 https://doi.org/10.1016/S0921-5093(96)10539-6
  9. S. R. Agnew, J. R. Weertman, 1998, The influence of texture on the elastic properties of ultrafine-grain copper, Mater. Sci. Eng. A, Vol. 242, pp. 174-180 https://doi.org/10.1016/S0921-5093(97)00504-2
  10. G. Wang, S. D. Wu, L. Zuo, C. Esling, Z. G. Wang, G. Y. Li, 2003, Microstructure texture grain boundaries in recrystallization regions in pure Cu ECAE sample, Mater. Sci. Eng. A, Vol. 346, pp. 83-90 https://doi.org/10.1016/S0921-5093(02)00521-X
  11. S. R. Dong, J. P. Tu, X. B. Zhang, 2001, An investigation of the sliding wear behavior of Cu-matrix composites reinforced by carbon nanotubes, Mater. Sci. Eng. A, Vol. 313, pp. 83-87 https://doi.org/10.1016/S0921-5093(01)00963-7
  12. S. Arai, M. Endo, 2003 Carbon nanofiber-copper composite powder prepared by electrodeposition, Electrochem. Commun., Vol. 5, pp. 797-799 https://doi.org/10.1016/j.elecom.2003.08.002
  13. D. Y. Ying, D. L. Zhang, 2000, Processing of Cu-A1203 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, Vol. 286, pp. 152-156 https://doi.org/10.1016/S0921-5093(00)00627-4
  14. S. S. Wang, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, 1998, Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology, Nature, Vol. 394, pp. 52-55 https://doi.org/10.1038/27873
  15. G. D. Zhan, J. C. Kuntz, A. K. Mukherjee, P. Zhu, K. Koumoto, 2006, Thermoelectric properties of carbon nanotube/ceramic nanocomposites, Scripta Mater., Vol. 54, pp. 77-82 https://doi.org/10.1016/j.scriptamat.2005.09.003
  16. H. Zhan, C. Zheng, W. Chen, M. Wang, 2005, Characterization and nonlinear optical property of a multi-walled carbon nanotube/silica xerogel composite, Chem. Phys. Lett., Vol. 411, pp. 373- 377 https://doi.org/10.1016/j.cplett.2005.06.058
  17. S. C. Yoon, S. J. Hong, M. H. Seo, Y. G. Jeong, H. S. Kim, 2004, Consolidation of rapidly solidified Al-20 wt% Si alloy powders using equal channel angular pressing, J. Kor. Powder Metall. Inst., Vol. 11, pp. 233-241 https://doi.org/10.4150/KPMI.2004.11.3.233
  18. E. Dujardin, T. W. Ebbesen, A. Krishnan, M. M. J. Treacy, 1998, Wetting of single shell carbon nanotubes, Adv. Mater., Vol. 10, pp. 1472-1475 https://doi.org/10.1002/(SICI)1521-4095(199812)10:17<1472::AID-ADMA1472>3.0.CO;2-R
  19. K. Mukhopadhyay, C. D. Dwivedi, G. N. Mathur, 2002, Conversion of carbon nanotubes to carbon nanofibers by soniccation, Carbon, Vol. 40, pp. 1373-1376 https://doi.org/10.1016/S0008-6223(02)00074-X
  20. T. Kuzumaki, S. Kitakata, K. Enomoto, T. Yasuhara, N. Ohtake, T. Mitsuda, 2004, Dynamic observation of the bending behavior of carbon nanotubes by nanoprobe manipulation in TEM, Carbon, Vol. 11, pp. 2343-2345
  21. E. Dujardin, T. W. Ebbesen, H. Hiur and K. Tanigaki, 1994, Capillarity and wetting of carbon nanotubes, Science. Vol. 265, pp. 1850-1850 https://doi.org/10.1126/science.265.5180.1850
  22. R. M. German, Sintering Theory and Practice, John Wiley & Sons, Canada (1996) p. 544
  23. S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, S. H. Hong, 2005, Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process, Scripta Mater., Vol. 53, pp. 793-797 https://doi.org/10.1016/j.scriptamat.2005.06.011

Cited by

  1. Carbon nanotubes: a novel material for multifaceted applications in human healthcare vol.46, pp.1, 2017, https://doi.org/10.1039/C6CS00517A