• Title/Summary/Keyword: Full transformation semigroup

Search Result 7, Processing Time 0.024 seconds

MAXIMAL PROPERTIES OF SOME SUBSEMIBANDS OF ORDER-PRESERVING FULL TRANSFORMATIONS

  • Zhao, Ping;Yang, Mei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.627-637
    • /
    • 2013
  • Let [$n$] = {1, 2, ${\ldots}$, $n$} be ordered in the standard way. The order-preserving full transformation semigroup ${\mathcal{O}}_n$ is the set of all order-preserving singular full transformations on [$n$] under composition. For this semigroup we describe maximal subsemibands, maximal regular subsemibands, locally maximal regular subsemibands, and completely obtain their classification.

Regularity of a Particular Subsemigroup of the Semigroup of Transformations Preserving an Equivalence

  • Rakbud, Jittisak
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.627-635
    • /
    • 2018
  • In this paper, we use the notion of characters of transformations provided in [8] by Purisang and Rakbud to define a notion of weak regularity of transformations on an arbitrarily fixed set X. The regularity of a semigroup of weakly regular transformations on a set X is also investigated.

REMARKS ON ISOMORPHISMS OF TRANSFORMATION SEMIGROUPS RESTRICTED BY AN EQUIVALENCE RELATION

  • Namnak, Chaiwat;Sawatraksa, Nares
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.705-710
    • /
    • 2018
  • Let T(X) be the full transformation semigroup on a set X and ${\sigma}$ be an equivalence relation on X. Denote $$E(X,{\sigma})=\{{\alpha}{\in}T(X):{\forall}x,\;y{\in}X,\;(x,y){\in}{\sigma}\;\text{implies}\;x{\alpha}=y{\alpha}\}.$$. Then $E(X,{\sigma})$ is a subsemigroup of T(X). In this paper, we characterize two semigroups of type $E(X,{\sigma})$ when they are isomorphic.

Generalized Transformation Semigroups Whose Sets of Quasi-ideals and Bi-ideals Coincide

  • Chinram, Ronnason
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.161-166
    • /
    • 2005
  • Let BQ be the class of all semigroups whose bi-ideals are quasi-ideals. It is known that regular semigroups, right [left] 0-simple semigroups and right [left] 0-simple semigroups belong to BQ. Every zero semigroup is clearly a member of this class. In this paper, we characterize when generalized full transformation semigroups and generalized Baer-Levi semigroups are in BQ in terms of the cardinalities of sets.

  • PDF

REGULARITY OF TRANSFORMATION SEMIGROUPS DEFINED BY A PARTITION

  • Purisang, Pattama;Rakbud, Jittisak
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.217-227
    • /
    • 2016
  • Let X be a nonempty set, and let $\mathfrak{F}=\{Y_i:i{\in}I\}$ be a family of nonempty subsets of X with the properties that $X={\bigcup}_{i{\in}I}Y_i$, and $Y_i{\cap}Y_j={\emptyset}$ for all $i,j{\in}I$ with $i{\neq}j$. Let ${\emptyset}{\neq}J{\subseteq}I$, and let $T^{(J)}_{\mathfrak{F}}(X)=\{{\alpha}{\in}T(X):{\forall}i{\in}I{\exists}_j{\in}J,Y_i{\alpha}{\subseteq}Y_j\}$. Then $T^{(J)}_{\mathfrak{F}}(X)$ is a subsemigroup of the semigroup $T(X,Y^{(J)})$ of functions on X having ranges contained in $Y^{(J)}$, where $Y^{(J)}:={\bigcup}_{i{\in}J}Y_i$. For each ${\alpha}{\in}T^{(J)}_{\mathfrak{F}}(X)$, let ${\chi}^{({\alpha})}:I{\rightarrow}J$ be defined by $i{\chi}^{({\alpha})}=j{\Leftrightarrow}Y_i{\alpha}{\subseteq}Y_j$. Next, we define two congruence relations ${\chi}$ and $\widetilde{\chi}$ on $T^{(J)}_{\mathfrak{F}}(X)$ as follows: $({\alpha},{\beta}){\in}{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}={\chi}^{({\beta})}$ and $({\alpha},{\beta}){\in}\widetilde{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}{\mid}_J={\chi}^{({\alpha})}{\mid}_J$. We begin this paper by studying the regularity of the quotient semigroups $T^{(J)}_{\mathfrak{F}}(X)/{\chi}$ and $T^{(J)}_{\mathfrak{F}}(X)/{\widetilde{\chi}}$, and the semigroup $T^{(J)}_{\mathfrak{F}}(X)$. For each ${\alpha}{\in}T_{\mathfrak{F}}(X):=T^{(I)}_{\mathfrak{F}}(X)$, we see that the equivalence class [${\alpha}$] of ${\alpha}$ under ${\chi}$ is a subsemigroup of $T_{\mathfrak{F}}(X)$ if and only if ${\chi}^{({\alpha})}$ is an idempotent element in the full transformation semigroup T(I). Let $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ be the sets of functions in $T_{\mathfrak{F}}(X)$ such that ${\chi}^{({\alpha})}$ is injective, surjective and bijective respectively. We end this paper by investigating the regularity of the subsemigroups [${\alpha}$], $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ of $T_{\mathfrak{F}}(X)$.