Generalized Transformation Semigroups Whose Sets of Quasiideals and Bi -ideals Coincide

Ronnason Chinram
Department of Mathematics, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
e-mail : ronnason.c@psu.ac.th

Abstract. Let $\boldsymbol{B} \boldsymbol{Q}$ be the class of all semigroups whose bi-ideals are quasi-ideals. It is known that regular semigroups, right [left] simple semigroups and right [left] 0-simple semigroups belong to $\boldsymbol{B} \boldsymbol{Q}$. Every zero semigroup is clearly a member of this class. In this paper, we characterize when generalized full transformation semigroups and generalized Baer-Levi semigroups are in $\boldsymbol{B Q}$ in terms of the cardinalities of sets.

1. Introduction and preliminaries

A subsemigroup Q of a semigroup S is called a quasi-ideal of S if $S Q \cap Q S \subseteq Q$, and by a bi-ideal of S we mean a subsemigroup B of S such that $B S B \subseteq B$. Quasi-ideals are a generalization of left ideals and right ideals and bi-ideals are a generalization of quasi-ideals. Moreover, the intersection of a left ideal and a right ideal of S is a quasi-ideal of S and every quasi-ideal of S can be obtained in this way. The notion of quasi-ideal was first introduced by O. Steinfeld in [7]. In fact, the notion of bi-ideal was given earlier by R. A. Good and D. R. Hughes [3]. It was actually introduced in 1952.

For a nonempty subset A of a semigroup $S,(A)_{q}$ and $(A)_{b}$ denote the quasi-ideal and the bi-ideal of S generated by A, respectively, that is $(A)_{q}$ is the intersection of all quasi-ideals of S containing A and $(A)_{b}$ is the intersection of all bi-ideals of S containing A ([8], page 10 and 12).

Proposition 1.1 ([2], page 84-85). For any nonempty subset A of S,

$$
(A)_{q}=S^{1} A \cap A S^{1} \text { and }(A)_{b}=A S^{1} A \cup A
$$

Let $\boldsymbol{B} \boldsymbol{Q}$ denote the class of all semigroups whose sets of bi-ideals and quasiideals coincide. It is known that the following semigroups belong to $\boldsymbol{B} \boldsymbol{Q}$: regular semigroups ([6]), left [right] simple semigroups ([5]) and left [right] 0-simple semigroups ([5]). Not only these semigroups are in $\boldsymbol{B} \boldsymbol{Q}$. A nontrivial zero semigroup is an obvious example. In fact, J. Calais [1] has characterized the semigroups in $\boldsymbol{B} \boldsymbol{Q}$ as follows: A semigroup S is in $\boldsymbol{B} \boldsymbol{Q}$ if and only if $(x, y)_{q}=(x, y)_{b}$ for all $x, y \in S$.

Received August 13, 2003, and, in revised form, February 14, 2005.
2000 Mathematics Subject Classification: 20M20.
Key words and phrases: generalized transformation semigroups, bi-ideals, quasi-ideals.

It is not easy to see from this characterization whether a given semigroup belongs to $\boldsymbol{B} \boldsymbol{Q}$. The purpose of this paper is to find necessary and sufficient conditions for generalized full transformation semigroups and generalized Baer-Levi semigroups to belong to $\boldsymbol{B Q}$.

2. Generalized full transformation semigroups

Let X be a nonempty set and $T(X)$ the full transformation semigroup on X. It is well-known that $T(X)$ is regular ([4], page 14), so $T(X) \in \boldsymbol{B} \boldsymbol{Q}$. To generalize this, let X and Y be nonempty sets, k a cardinal number such that $k>0$,

$$
T(X, Y)=\text { the set of all full transformations from } X \text { to } Y
$$

and

$$
T_{k}(X, Y)=\{\alpha \in T(X, Y)| | \operatorname{ran} \alpha \mid \leqslant k\}
$$

For a cardinal number k such that $k>0$ and $\theta \in T(Y, X)$, let $\left(T_{k}(X, Y), \theta\right)$ be a semigroup $\left(T_{k}(X, Y), *\right)$ where $\alpha * \beta=\alpha \theta \beta$ for all $\alpha, \beta \in T_{k}(X, Y)$. It is well-defined because $\operatorname{ran} \alpha \theta \beta \subseteq \operatorname{ran} \beta$ and $|\operatorname{ran} \beta| \leqslant k$ for all $\alpha, \beta \in T_{k}(X, Y)$. The following theorem characterizes when the semigroups $\left(T_{k}(X, Y), \theta\right)$ are regular.

Theorem 2.1. For a cardinal number k such that $k>0$ and $\theta \in T(Y, X)$, $\left(T_{k}(X, Y), \theta\right)$ is regular if and only if one of the following statements holds.
(i) $|X|=1$.
(ii) $|Y|=1$.
(iii) $k=1$.
(iv) θ is bijective.

Proof. Assume that $|X|=1,|Y|=1$ or $k=1$. Let $\alpha, \beta \in T_{k}(X, Y)$. Since $\operatorname{ran} \alpha \theta \beta \theta \alpha \subseteq \operatorname{ran} \alpha$ and $|\operatorname{ran} \alpha|=1, \operatorname{ran} \alpha \theta \beta \theta \alpha=\operatorname{ran} \alpha$, and hence $\alpha \theta \beta \theta \alpha=\alpha$.

Next, assume that θ is bijective. Let $\alpha \in T_{k}(X, Y)$. For all $y \in \operatorname{ran} \alpha$, let $x_{y} \in X$ be such that $x_{y} \alpha=y$. Let $y_{0} \in \operatorname{ran} \alpha$. Define $\beta \in T(X, Y)$ by

$$
x \beta= \begin{cases}x_{y} \theta^{-1} & \text { if } x=y \theta \text { for some } y \in \operatorname{ran} \alpha, \\ x_{y_{0}} \theta^{-1} & \text { if } x \in X \backslash(\operatorname{ran} \alpha) \theta\end{cases}
$$

Then $|\operatorname{ran} \beta|=\left|\left\{x_{y} \theta^{-1} \mid y \in \operatorname{ran} \alpha\right\}\right|=|\operatorname{ran} \alpha| \leqslant k$. Therefore $\beta \in T_{k}(X, Y)$. For $y \in \operatorname{ran} \alpha$, we have

$$
y \theta \beta \theta \alpha=x_{y} \theta^{-1} \theta \alpha=x_{y} \alpha=y
$$

Then $\left.\theta \beta \theta \alpha\right|_{\text {ran } \alpha}=i d_{\text {ran } \alpha}$, and hence $\alpha \theta \beta \theta \alpha=\alpha$.
To prove the converse, assume that $k,|X|,|Y|>1$ and θ is not bijective.
Case 1: θ is not one-to-one. Then there exist $y_{1}, y_{2} \in Y$ such that $y_{1} \neq y_{2}$ but $y_{1} \theta=y_{2} \theta$. Since $|X|>1$, let $x_{1}, x_{2} \in X$ be such that $x_{1} \neq x_{2}$. Define $\alpha \in T_{k}(X, Y)$ by

$$
x \alpha= \begin{cases}y_{1} & \text { if } x=x_{1} \\ y_{2} & \text { if } x \neq x_{1}\end{cases}
$$

Let $\beta \in T_{k}(X, Y)$. We have

$$
x_{1} \alpha=y_{1} \neq y_{2}=x_{2} \alpha
$$

but

$$
x_{1} \alpha \theta \beta \theta \alpha=y_{1} \theta \beta \theta \alpha=y_{2} \theta \beta \theta \alpha=x_{2} \alpha \theta \beta \theta \alpha .
$$

Therefore $\alpha \neq \alpha \theta \beta \theta \alpha$ for all $\beta \in T_{k}(X, Y)$.
Case 2: θ is not onto. Let $y_{1}, y_{2} \in Y$ be distinct. Let $\alpha \in T_{k}(X, Y)$ be such that

$$
x \alpha= \begin{cases}y_{1} & \text { if } x \in \operatorname{ran} \theta \\ y_{2} & \text { otherwise }\end{cases}
$$

Then $\operatorname{ran} \alpha=\left\{y_{1}, y_{2}\right\}$ and $\operatorname{ran} \theta \alpha=\left\{y_{1}\right\}$. Then for all $\beta \in T_{k}(X, Y)$, since $\operatorname{ran} \alpha \theta \beta \theta \alpha \subseteq \operatorname{ran} \theta \alpha=\left\{y_{1}\right\}, \alpha \theta \beta \theta \alpha \neq \alpha$.

From both two cases, $\left(T_{k}(X, Y), \theta\right)$ is not regular.
Proposition 2.2. If $|X|,|Y|, k>1$, then $\left(T_{k}(X, Y), \theta\right)$ is neither left simple nor right simple.
Proof. Let $\alpha \in T_{1}(X, Y)$ and $\beta \in T_{k}(X, Y)$. Since $\operatorname{ran} \beta \theta \alpha \subseteq \operatorname{ran} \alpha,|\operatorname{ran} \beta \theta \alpha|=1$, so $\beta \theta \alpha \in T_{1}(X, Y)$. We have $\operatorname{ran} \alpha \theta \beta=(\operatorname{ran} \alpha) \theta \beta$. So $|\operatorname{ran} \alpha \theta \beta|=|(\operatorname{ran} \alpha) \theta \beta| \leqslant$ $|\operatorname{ran} \alpha|=1$, it follows $|\operatorname{ran} \alpha \theta \beta|=1$. Thus $\alpha \theta \beta \in T_{1}(X, Y)$. Hence $T_{1}(X, Y)$ is a proper ideal of $\left(T_{k}(X, Y), \theta\right)$. Therefore $\left(T_{k}(X, Y), \theta\right)$ is neither left simple nor right simple, as required.

Theorem 2.3. For a cardinal number k such that $k>0$ and $\theta \in T(Y, X)$, $\left(T_{k}(X, Y), \theta\right)$ belongs to $\boldsymbol{B} \boldsymbol{Q}$.
Proof. Since every quasi-ideal of any semigroup S is a bi-ideal of S, it suffices to show that every bi-ideal of $\left(T_{k}(X, Y), \theta\right)$ is a quasi-ideal of $\left(T_{k}(X, Y), \theta\right)$.

Let B be a bi-ideal of $\left(T_{k}(X, Y), \theta\right)$. Let $\alpha \in B \theta T_{k}(X, Y) \cap T_{k}(X, Y) \theta B$. Then $\alpha=\beta \theta \gamma=\lambda \theta \eta$ for some $\beta, \eta \in T_{k}(X, Y)$ and $\gamma, \lambda \in B$. Since $\lambda \theta \in T(X)$ and $T(X)$ is regular, $\lambda \theta \mu \lambda \theta$ for some $\mu \in T(X)$. Then we have

$$
\alpha=\lambda \theta \eta=\lambda \theta \mu \lambda \theta \eta=\lambda \theta \mu \beta \theta \gamma
$$

Since $\operatorname{ran} \mu \beta \subseteq \operatorname{ran} \beta, \mu \beta \in T_{k}(X, Y)$. Therefore $\alpha=\lambda \theta \mu \beta \theta \gamma \in B \theta T_{k}(X, Y) \theta B$ $\subseteq B$, and hence B is a quasi-ideal of $\left(T_{k}(X, Y), \theta\right)$, as required.

Remark 2.4. From Theorem 2.1 and Proposition 2.2, we have known that if $|X|,|Y|, k>1$ and θ is not a bijection, then $\left(T_{k}(X, Y), \theta\right)$ is not regular, not left simple and not right simple. However, we have shown in Theorem 2.3, it belongs to $\boldsymbol{B} \boldsymbol{Q}$. Then $\left(T_{k}(X, Y), \theta\right)$ where $|X|,|Y|, k>1$ and θ is not a bijection becomes a nontrivial example of semigroups without zero in $\boldsymbol{B} \boldsymbol{Q}$ which are not regular, not left simple and not right simple.

3. Generalized Baer-Levi semigroups

Let X be a countably infinite set and $B L(X)=\{\alpha \in T(X) \mid \alpha$ is one-to-one and $X \backslash \operatorname{ran} \alpha$ is infinite $\}$. $B L(X)$ is called Baer-Levi semigroup on $X([4]$, page 14). We have known that $B L(X)$ is right simple ([4], page 14). Then $B L(X)$ belongs to $\boldsymbol{B} \boldsymbol{Q}$. To generalize this, let X and Y be infinite sets, k an infinite cardinal number such that $k \leqslant|Y|$,

$$
\begin{gathered}
M(Y, X)=\{\alpha \in T(Y, X) \mid \alpha \text { is one-to-one }\} \text { and } \\
B L_{k}(X, Y)=\{\alpha \in T(X, Y) \mid \alpha \text { is one-to-one and }|Y \backslash \operatorname{ran} \alpha| \geqslant k\} .
\end{gathered}
$$

It is clear that $B L_{k}(X, Y) \neq \emptyset$ and $M(Y, X) \neq \emptyset$ if and only if $|X|=|Y|$.
Proposition 3.1. Let X and Y be infinite sets such that $|X|=|Y|$ and k an infinite cardinal number such that $k \leqslant|Y|$. If $\theta \in M(Y, X)$, then $\alpha \theta \beta \in B L_{k}(X, Y)$ for all $\alpha, \beta \in B L_{k}(X, Y)$.
Proof. Since α, θ and β are one-to-one, $\alpha \theta \beta$ is one-to-one. Since $\operatorname{ran} \alpha \theta \beta \subseteq \operatorname{ran} \beta$, $|Y \backslash \operatorname{ran} \alpha \theta \beta| \geqslant|Y \backslash \operatorname{ran} \beta| \geqslant k$. Therefore $\alpha \theta \beta \in B L_{k}(X, Y)$, as required.

In the reminder, let X and Y be infinite sets such that $|X|=|Y|$ and k an infinite cardinal number such that $k \leqslant|Y|$. For $\theta \in M(Y, X)$, let $\left(B L_{k}(X, Y), \theta\right)$ be a semigroup $\left(B L_{k}(X, Y), *\right)$ where $\alpha * \beta=\alpha \theta \beta$ for all $\alpha, \beta \in B L_{k}(X, Y)$.

Proposition 3.2. $\left(B L_{k}(X, Y), \theta\right)$ is not regular for all $\theta \in M(Y, X)$.
Proof. Let $\alpha, \beta \in B L_{k}(X, Y)$ be such that $\alpha=\alpha \theta \beta \theta \alpha$. Since α is one-to-one, $\alpha \theta \beta \theta=i d_{X}$. Since $\theta \beta \theta$ is one-to-one, α must be onto, a contradiction. Therefore $\left(B L_{k}(X, Y), \theta\right)$ is not regular.

Lemma 3.3. Let $\theta \in M(Y, X)$. If $|X|=|Y|=k$, then $\left(B L_{k}(X, Y), \theta\right)$ is right simple.
Proof. Let R be a right ideal of $\left(B L_{k}(X, Y), \theta\right), \alpha \in R$ and $\beta \in B L_{k}(X, Y)$. By infiniteness of $Y \backslash \operatorname{ran} \beta$, there exist Y_{1} and Y_{2} such that $|Y \backslash \operatorname{ran} \beta|=\left|Y_{1}\right|=\left|Y_{2}\right|, Y \backslash$ $\operatorname{ran} \beta=Y_{1} \cup Y_{2}$ and $Y_{1} \cap Y_{2}=\emptyset$. Since $|X \backslash X \alpha \theta| \leqslant|X|=k=|Y \backslash \operatorname{ran} \beta|=\left|Y_{1}\right|$, there exists $\phi:(X \backslash X \alpha \theta) \rightarrow Y_{1}$ is injective. For all $x \in X \alpha \theta$, let $a_{x} \in X$ be such that $x=a_{x} \alpha \theta$. Define $\gamma \in T(X, Y)$ by

$$
x \gamma= \begin{cases}a_{x} \beta & \text { if } x \in X \alpha \theta \\ x \phi & \text { if } x \in X \backslash X \alpha \theta\end{cases}
$$

Then γ is one-to-one and $|Y \backslash \operatorname{ran} \gamma| \geqslant\left|Y_{2}\right|=k$. Therefore $\gamma \in B L_{k}(X, Y)$. Since $\alpha \theta$ is one-to-one, $x \alpha \theta \gamma=x \beta$ for all $x \in X$. Hence $\alpha \theta \gamma=\beta$. Therefore $R=B L_{k}(X, Y)$, and hence $\left(B L_{k}(X, Y), \theta\right)$ is right simple.

The following theorem gives necessary and sufficient condition for $\left(B L_{k}(X, Y), \theta\right)$ to belong to $\boldsymbol{B} \boldsymbol{Q}$.

Theorem 3.4. $\left(B L_{k}(X, Y), \theta\right) \in \boldsymbol{B} \boldsymbol{Q}$ if and only if $|X|=|Y|=k$.
Proof. If $|X|=|Y|=k$, by Lemma 3.3, $\left(B L_{k}(X, Y), \theta\right)$ is right simple, so $\left(B L_{k}(X, Y), \theta\right) \in \boldsymbol{B} \boldsymbol{Q}$.

For the converse, assume that $k<|X|=|Y|$. By infiniteness of Y, there exist subsets Y_{1}, Y_{2} and Y_{3} of Y such that

$$
\begin{array}{r}
|Y|=\left|Y_{1}\right|=\left|Y_{2}\right|, \quad Y=Y_{1} \cup Y_{2}, Y_{1} \cap Y_{2}=\emptyset \\
Y_{3} \subseteq Y_{2} \quad \text { and }\left|Y_{2} \backslash Y_{3}\right|=\left|Y_{2}\right|=\left|Y_{3}\right|
\end{array}
$$

Let Y_{4} be a subset of Y such that $\left|Y_{4}\right|=k$. Then $\left|Y \backslash Y_{4}\right|=|Y|$. Since $|X|=\left|Y_{1}\right|$ and $|X|=\left|Y \backslash Y_{4}\right|$, there are bijections $\alpha: X \rightarrow Y_{1}$ and $\beta: X \rightarrow Y \backslash Y_{4}$. It follows that $\alpha, \beta \in B L_{k}(X, Y)$. Then $\alpha \theta: X \rightarrow Y_{1} \theta$. Moreover, $(\alpha \theta)^{-1} \beta \theta \alpha: Y_{1} \theta \rightarrow Y_{1}$ is one-to-one. Since $Y_{2} \theta \subseteq X \backslash Y_{1} \theta$ and θ is one-to-one, $\left|X \backslash Y_{1} \theta\right|=\left|Y_{2} \theta\right|=\left|Y_{2}\right|=\left|Y_{3}\right|$. Thus there is a bijection $\phi: X \backslash Y_{1} \theta \rightarrow Y_{3}$. Define $\gamma: X \rightarrow Y$ by

$$
x \gamma= \begin{cases}x(\alpha \theta)^{-1} \beta \theta \alpha & \text { if } x \in Y_{1} \theta, \\ x \phi & \text { if } x \in X \backslash Y_{1} \theta\end{cases}
$$

Since $Y_{1} \cap Y_{3}=\emptyset$ and θ is one-to-one, γ is one-to-one. Also we have

$$
\operatorname{ran} \gamma \subseteq Y_{1} \cup Y_{3}
$$

which implies that

$$
|Y \backslash \operatorname{ran} \gamma| \geqslant\left|Y_{2} \backslash Y_{3}\right|=\left|Y_{2}\right|=|Y| \geqslant k
$$

Therefore $\gamma \in B L_{k}(X, Y)$. By definition of γ and $\operatorname{ran} \alpha \theta=Y_{1} \theta,\left.\gamma\right|_{\operatorname{ran} \alpha \theta}=$ $\left.(\alpha \theta)^{-1} \beta \theta \alpha\right|_{\operatorname{ran} \alpha \theta}$. Thus $\beta \theta \alpha=\alpha \theta \gamma \in B L_{k}(X, Y) \theta \alpha \cap \alpha \theta B L_{k}(X, Y) \subseteq(\alpha)_{q}$. Suppose that $\beta \theta \alpha \in(\alpha)_{b}$. By Proposition 1.1,

$$
(\alpha)_{b}=\alpha \theta B L_{k}(X, Y) \theta \alpha \cup\{\alpha, \alpha \theta \alpha\}
$$

Case 1: $\beta \theta \alpha=\alpha$. Since α is one-to-one, $\beta \theta=i d_{X}$. Since θ is one-to-one, β is onto, a contradiction.

Case 2: $\beta \theta \alpha=\alpha \theta \alpha$. Then $\beta=\alpha$ because α and θ are one-to-one. This is a contradiction because $|Y \backslash \operatorname{ran} \beta|=k<|Y|=\left|Y_{2}\right|=|Y \backslash \operatorname{ran} \alpha|$.

Case 3: $\beta \theta \alpha \in \alpha \theta B L_{k}(X, Y) \theta \alpha$. Then $\beta \theta \alpha=\alpha \theta \lambda \theta \alpha$ for some $\lambda \in B L_{k}(X, Y)$. This implies that $\beta=\alpha \theta \lambda$ since α and θ are one-to-one. Hence

$$
\begin{aligned}
\left|Y_{4}\right| & =|Y \backslash \operatorname{ran} \beta|=|Y \backslash \operatorname{ran} \alpha \theta \lambda| \geqslant|X \lambda \backslash(\operatorname{ran} \alpha \theta) \lambda| \\
& =|(X \backslash \operatorname{ran} \alpha \theta) \lambda| \quad \text { since } \lambda \text { is one-to-one } \\
& =\left|\left(X \backslash Y_{1} \theta\right) \lambda\right| \geqslant\left|Y_{2} \theta \lambda\right|=\left|Y_{2}\right| \quad \text { since } \theta \lambda \text { is one-to-one, }
\end{aligned}
$$

a contradiction.
Hence $\left(B L_{k}(X, Y), \theta\right) \notin \boldsymbol{B} \boldsymbol{Q}$.
Corollary 3.5. Let $\theta \in M(Y, X)$. Then the following statements are equivalent:
(i) $|X|=|Y|=k$.
(ii) $\left(B L_{k}(X, Y), \theta\right)$ is right simple.
(iii) $\left(B L_{k}(X, Y), \theta\right) \in \boldsymbol{B} \boldsymbol{Q}$.

Proof. By Lemma 3.3, Theorem 3.4 and the fact that every right simple semigroup belongs to $\boldsymbol{B Q}$.

References

[1] J. Calais, Demi-groups quasi-inversif, C. R. Acad. Paris, 252(1961), 2357-2359.
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I., Amer. Math. Soc., Providence I(1961).
[3] R. A. Good and D. R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc., 58(1952), 624-625(Abstract).
[4] P. Higgins, Techniques of Semigroup Theory, Oxford University Press: Oxford-New York-Tokyo, (1992).
[5] K. M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publ. Math. Debrecen, 16(1969), 179-185.
[6] S. Lajos, Generalized ideals in semigroups, Acta. Sci. Math., 22(1961), 217-222.
[7] O. Steinfeld, Über die quasiideale von halbgruppen, Publ. Math. Debrecen, 4(1956), 262-275.
[8] O. Steinfeld, Quasi-ideals in Rings and Semigroups, Akadémiai Kiadó Budapest, (1978).

