• Title/Summary/Keyword: Fuel Cells

Search Result 1,451, Processing Time 0.03 seconds

A Conceptual Design Study for a Spent Fuel Pyroprocessing Facility of a Demonstration Scale (사용후핵연료 파이로 처리공정 실증시설의 개념설계 연구)

  • Yoo, Jae-Hyung;Hong, Kwon-Pyo;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.233-244
    • /
    • 2008
  • A conceptual design study for a pyroprocesing facility, has been carried out in this study, which is available for the recovery of uranium and transuranic elemental group(TRU), that is, reusable as a nuclear fuel especially in a next generation-type reactor. The scale of this facility has been chosen as 20 kg HM/batch, comparatively small engineering size in order to collect scale-up data for the design of a commercial facility as well as to get operational experience. The spent fuel to be handled in this process is as follows : 3.5 % enriched uranium fuel, 35,000MWd/tU and 5-year cooled. The major items considered in the conceptual study are a building lay-out including various hot cells, safety management of the process operation in conjunction with material balance control, radiation safety, inert atmosphere control in shielded hot cells, and criticality control of uranium and TRU products.

  • PDF

Synthetic Strategies for High Performance Hydrocarbon Polymer Electrolyte Membranes (PEMs) for Fuel Cells (고성능 탄화수소계 고분자 전해질막의 합성 전략)

  • Lee, So Young;Kim, Hyoung-Juhn;Nam, Sang Yong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Fuel cells are regarded as a representative energy source expected to replace fossil fuels particularly used in internal combustion engines. One of the most important components is polymer electrolyte membranes (PEMs) acting as a proton conducting barrier to prevent fuel gas crossover. Since water channels act as proton pathways through PEMs, many researchers have been focused on the 'good phase-separation of hydrophilic moiety' which ensures high water retention under low humidity enough to keep the water channel for good proton conduction. Here, we summarized the strategies which have been adopted to synthesize sulfonated PEMs having high proton conductivities even under low humidified conditions, and hope this review will be helpful to design high performance hydrocarbon PEMs.

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Jang, Geun Young;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.336-345
    • /
    • 2020
  • Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.

R & D Trends on Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 연구동향)

  • Kwon, Yongchai;Han, Jonghee;Kim, Jinsoo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.583-591
    • /
    • 2008
  • Recently, as a demand for the portable device is surged, there are needs to develop a new fuel cell system for replacing the conventionally used secondary battery. For this purpose, it becomes important to develop direct formic acid fuel cell (DFAFC) that uses formic acid as a fuel. The formic acid can offer typical advantages such as excellent non-toxicity of the level to be used as food additive, smaller crossover flux through electrolyte, and high reaction capability caused by high theoretical electromotive force (EMF). With the typical merits of formic acid, the efforts for optimizing reaction catalyst and cell design are being made to enhance performance and long term stability of DFAFC. As a result, to date, the DFAFC having the power density of more than $300mW/cm^2$ was developed. In this paper, basic performing theory and configuration of DFAFC are initially introduced and future opportunities of DFAFC including the development of catalyst for the anode electrode and electrolyte, and design for the optimization of cell structure are discussed.

Electrochemical Catalytic Behavior of Cu2O Catalyst for Oxygen Reduction Reaction in Molten Carbonate Fuel Cells

  • Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Han, Jonghee;Yoon, Sung Pil;Kang, Min-Goo;Jang, Seong-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • To enhance the performance of cathodes at low temperatures, a Cu-coated cathode is prepared, and its electrochemical performance is examined by testing its use in a single cell. At $620^{\circ}C$ and a current density of $150mAcm^{-2}$, a single cell containing the Cu-coated cathode has a significantly higher voltage (0.87 V) during the initial operation than does that with an uncoated cathode (0.79 V). According to EIS analysis, the high voltage of the cell with the Cu-coated cathode is due to the dramatic decrease in the high-frequency resistance related to electrochemical reactions. From XPS analysis, it is confirmed that the Cu is initially in the form of $Cu_2O$ and is converted into CuO after 150 h of operation, without any change in the state of the Ni or Li. Therefore, the high initial cell voltage is confirmed to be due to $Cu_2O$. Because $Cu_2O$ is catalytically active toward $O_2$ adsorption and dissociation, $Cu_2O$ on a NiO cathode enhances cell performance and reduces cathode polarization. However, the cell with the Cu-coated cathode does not maintain its high voltage because $Cu_2O$ is oxidized to CuO, which demonstrates similar catalytic activity toward $O_2$ as NiO.

Development of Intermediate Temperature Fuel Cell Using a Solid Proton Conductor (고체 수소이온 전도체를 이용한 중온형 연료전지 개발)

  • Seo, Dong-Ho;Kim, Hong-Rok;Shakkthivel, P.;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.22-32
    • /
    • 2008
  • Because of an emerging importance of clean energy, fuel cells are attract more attention due to their ability to produce high efficient power without any harmful emission. Fuel cells are energy conversion device with directly convert chemical energy into electrical energy by the chemical reactions, which have potential applications in automobile, spacecraft, stationary, industrial and home appliances. Recently there are gaining demand to develop an intermediate temperature fuel cell and available proton conductors at $200{\sim}500^{\circ}C$, which promising operating temperatures range for both material science and energy conversion processes. In this paper, we have reviewed electrochemical properties and current technology of solid state proton conductors. In addition, development of intermediate temperature fuel cell using the perovskite-type solid protonic conductor is also discussed.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater (생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구)

  • KIM, SANG KYU;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.506-513
    • /
    • 2021
  • The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.

Molecular Dynamics Study of Anion Conducting Ionomer under Excessive Water Condition (과량의 수화상태에서 음이온 전도성 이오노머의 분자동역학 전산모사 연구)

  • Hoseong, Kang;So Young, Lee;Hyoung-Juhn, Kim;Chang Hyun, Lee;Chi Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.475-485
    • /
    • 2022
  • The continuous excessive consumption of fossil fuels is causing global warming, climate, and environmental crisis. Accordingly, hydrogen energy attracts attention among alternative energies of fossil fuels, because it has the advantage of not emitting pollutants and not having resource restrictions. Therefore, various studies are being conducted on a water electrolysis system for producing hydrogen and a fuel cell system for producing electricity by using hydrogen energy as a fuel. In this study, 3D ionomer models were produced by reflecting the excessive water condition of an anion-conductive ionomer material, which is one of the core materials of water electrolysis systems and fuel cells. Finally, by analyzing the structural stability and performance of the ionomer under an excessively hydrated condition, we suggested a performance improvement factor in the design of an anion conductive ionomer, a key material for water electrolysis systems and fuel cells.

Simultaneous Improvement of Dimensional Stability and Ionic Conductivity of QPAE/TiO2-x Composite Membranes According to TiO2 Content Control for Anion Exchange Membrane Fuel Cells (음이온교환막 연료전지를 위한 TiO2 함량 조절에 따른 QPAE/TiO2-x 복합막의 치수안정성 및 이온전도도 동시 개선 연구)

  • KIM, SANG HEE;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • A series of QPAE/TiO2-x (x = 1, 4, 7 and 10 wt%) organic/inorganic composite membranes were prepared as electrolyte membranes for alkaline anion exchange membrane fuel cells by controlling the content of inorganic filler with quaternized poly(arylene ether) (QPAE) random copolymer. Among the prepared QPAE/TiO2-x organic/inorganic composite membranes, the highest ionic conductivity was 26.6 mS cm-1 at 30℃ in QPAE/TiO2-7 composite membrane, which was improvement over the ionic conductivity value of 6.4 mS cm-1 (at 30℃) of the pristine QPAE membrane. Furthermore, the water uptake, swelling ratio, ionic exchange capacity, and thermal property of QPAE/TiO2-x composite membranes were improved compared to the pristine QPAE membrane. The results of these studies suggest that the fabricated QPAE/TiO2-x composite membranes have good prospects for alkaline anion exchange membrane fuel cell applications.