DOI QR코드

DOI QR Code

Simultaneous Improvement of Dimensional Stability and Ionic Conductivity of QPAE/TiO2-x Composite Membranes According to TiO2 Content Control for Anion Exchange Membrane Fuel Cells

음이온교환막 연료전지를 위한 TiO2 함량 조절에 따른 QPAE/TiO2-x 복합막의 치수안정성 및 이온전도도 동시 개선 연구

  • KIM, SANG HEE (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University) ;
  • YOO, DONG JIN (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
  • 김상희 (전북대학교 대학원 에너지저장/변환공학과(BK21 FOUR), 수소.연료전지연구센터) ;
  • 유동진 (전북대학교 대학원 에너지저장/변환공학과(BK21 FOUR), 수소.연료전지연구센터)
  • Received : 2021.12.14
  • Accepted : 2022.01.25
  • Published : 2022.02.28

Abstract

A series of QPAE/TiO2-x (x = 1, 4, 7 and 10 wt%) organic/inorganic composite membranes were prepared as electrolyte membranes for alkaline anion exchange membrane fuel cells by controlling the content of inorganic filler with quaternized poly(arylene ether) (QPAE) random copolymer. Among the prepared QPAE/TiO2-x organic/inorganic composite membranes, the highest ionic conductivity was 26.6 mS cm-1 at 30℃ in QPAE/TiO2-7 composite membrane, which was improvement over the ionic conductivity value of 6.4 mS cm-1 (at 30℃) of the pristine QPAE membrane. Furthermore, the water uptake, swelling ratio, ionic exchange capacity, and thermal property of QPAE/TiO2-x composite membranes were improved compared to the pristine QPAE membrane. The results of these studies suggest that the fabricated QPAE/TiO2-x composite membranes have good prospects for alkaline anion exchange membrane fuel cell applications.

Keywords

Acknowledgement

이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2B5B01001458).

References

  1. S. K. Ryu, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120-160 ℃'', Energy, Vol. 238, 2022, pp. 121791, doi: https://doi.org/10.1016/j.energy.2021.121791.
  2. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., Vol. 60, No. 1, 2010, pp. 85-92, doi: https://doi.org/10.1002/pi.2914.
  3. D. Yoo, H. Kim, S. Oh, and K. Park, "Durability Evaluation of air-cooled proton exchange membrane fuel cells stacks by repeated start-up/shut-down", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 5, 2021, pp.315-323, doi: https://doi.org/10.7316/KHNES.2021.32.5.315.
  4. C. E. Diesendruck and D. R. Dekel. "Water - a key parameter in the stability of anion exchange membrane fuel cells", Curr. Opion in Electrochem., Vol.9, 2018, pp. 173-178, doi: https://doi.org/10.1016/j.coelec.2018.03.019.
  5. K. H. Lee, J. Y. Chu, A. R. Kim, H. G. Kim, and D. J. Yoo, "Functionalized TiO2 mediated organic-inorganic composite membranes based on quaternized poly(arylene ether ketone) with enhanced ionic conductivity and alkaline stability for alkaline fuel cells", J. Membr. Sci., Vol. 634, 2021, pp. 119435, doi: https://doi.org/10.1016/j.memsci.2021.119435.
  6. P.F. Msomi, P. T. Nonjola, P. G. Ndungu, and J. Ramontja, "Poly(2,6-dimethyl-1,4-phenylene)/polysulfone anion exchange membrane blended with TiO2 with improved water uptake for alkaline fuel cell application", Int. J. Hydrog. Energy, Vol. 45, No. 53, 2020, pp. 9465-29476, doi:https://doi.org/10.1016/j.ijhydene.2020.08.012.
  7. K. H. Lee, J. Y. Chu, A. R. Kim, D. J. Yoo, "Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application". Int. J. Energy Res., 2019, Vol. 43, No 10, 5333-5345, doi: https://doi.org/10.1002/er.4610.
  8. K. Rambabu, G. Bharath, A. F. Arangadi, S. Velu, F. Banat, and P. L. Show, "ZrO2 incorporated polysulfone anion exchange membranes for fuel cell applications", Int. J. Hydrog. Energy, Vol. 45, 2020, pp. 29668-29680, doi: https://doi.org/10.1016/j.ijhydene.2020.08.175.
  9. M. Qiu, B. Zhang, H. Wu, L. Cao, X. He, Y. Li, J. Li, M. Xu, and Z. Jiang, "Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes", J. Membr. Sci., Vol. 573, No. 1, 2019, pp. 1-10, doi: https://doi.org/10.1016/j.memsci.2018.11.070.
  10. B. Hu, L. Miao, Y. Zhao, and C. Lu, "Azide-assisted crosslinked quaternized polysulfone with reduced grapheneoxide for highly stable anion exchange membranes", J. Membr. Sci., Vol. 530, 2017, pp. 84-94, doi: https://doi.org/10.1016/j.memsci.2017.02.023.
  11. C. Simari, E. Lufrano, N. Godbert, D. Gournis, L. Coppola, and I. Nicotera. "Titanium dioxide grafted on graphene oxide: Hybrid nanofiller for effective and low-cost proton exchange membranes", Nanomaterials, Vol. 10, No. 8, 2020, pp. 1572, doi: https://doi.org/10.3390/nano10081572.
  12. S. H. Kim, K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Enhanced Hydroxide conductivity and dimensional stability with blended membranes containing hyperbranched PAES/Linear PPO as anion exchange membranes", Polymers, Vol. 12, No. 12, 2020, pp. 3011, doi: https://doi.org/10.3390/polym12123011.
  13. A. R. Kim, M. Vinothkannan, K. H. Lee, J. Y. Chu, B. H. Park, M. K. Han, and D. J. Yoo, "Enhanced performance and durability of composite membranes containing anatase titanium oxide for fuel cells operating under low relative humidity", Int. J. Energy Res., 2021, doi: https://doi.org/10.1002/er.7477.
  14. Y, Yang, N. Ye, S. Chen, D. Zhang, R. Wan, X. Peng, and R. He, "Surfactant-assisted incorporation of ZrO2 nanoparticles in quaternized poly(2,6-dimethyl-1,4-phenylene oxide) for superior properties of anion exchange membranes", Renew. Energ., Vol. 166, 2020, pp. 45-55, doi: https://doi.org/10.1016/j.renene.2020.11.121.
  15. C. M. Tuan and D. Kim, "Anion-exchange membranes based on poly(arylene ether ketone) with pendant quaternary ammonium groups for alkaline fuel cell application", J. Membr. Sci., Vol. 511, 2016, pp. 143-150, doi: https://doi.org/10.1016/j.memsci.2016.03.059.
  16. S. K. Jeong, J. S. Lee, S. H. Woo, J. A. Seo, and B. R. Min, "Characterization of anion exchange membrane containing epoxy ring and C-Cl bond quaternized by various amine groups for application in fuel cells", Energies, Vol. 8, No. 7, 2015, pp. 7084-7099, doi: https://doi.org/10.3390/en8077084.
  17. L. I. Olvera, E. Aldeco-Perez, A. Rico-Zavala, L. G. Arriaga, J. A. Avila-Nino, J. Cardenas, R. Gavino, K. S. Perez, and V. H. Lara, "High therm om echanical stability and ion-conductivity of anion exchange membranes based on quaternized modified poly(oxyndoleterphenylene)", Polym. Test, Vol. 95, 2021, pp. 107092, doi: https://doi.org/10.1016/j.polymertesting.2021.107092.
  18. J. Pan, H. Zhu, H. Cao, B. Wang, J. Zhao, Z. Sun, and F. Yan, "Flexible cationic side chains for enhancing the hydroxide ion conductivity of olefinic-type copolymer-based anion exchange membranes: An experimental and theoretical study", J. Membr. Sci., Vol 620, 2021, pp. 118794, doi: https://doi.org/10.1016/j.memsci.2020.118794.
  19. L. Sun, J. Guo, Q. Xu, D. Chu, and R. Chen, "Novel nanostructured high-performance anion exchange ionomers for anion exchange membrane fuel cells", J. Power Sources, Vol. 202, 2012, pp. 70-77, doi: https://doi.org/10.1016/j.jpowsour.2011.11.023.
  20. L. Zhu, J. Pan, C. M. Christensen, B. Lin, and M. A. Hickner, "Functionalization of Poly(2,6-dimethyl-1,4-phenylene oxide)s with Hindered Fluorene Side Chains for Anion Exchange Membranes", Macromolecules, Vol. 49, No. 9, 2016, pp. 3300-3309, doi: https://doi.org/10.1021/acs.macromol.6b00578.
  21. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustain. Chem. Eng., Vol. 9, No. 26, 2021, pp. 8824-8834, doi: https://doi.org/10.1021/acssuschemeng.1c01978.
  22. D. E. Han and D. J. Yoo, "Mesoporous SiO2 mediated polybenzimidazole composite membranes for HT-PEMFC application", Trans. Korean Hydrogen New Energy Soc., Vol. 30, No. 2, 2019, pp. 128-135, doi: https://doi.org/10.7316/KHNES.2019.30.2.128.
  23. J. Ren, Y. Dong, J. Dai, H. Hu, Y. Zhu, and X. Teng, "A novel chloromethylated/quaternized poly(sulfone)/poly(vinylidene fluoride) anion exchange membrane with ultra-low vanadium permeability for all vanadium redox flow battery", J. Membr. Sci., Vol. 544, 2017, pp. 186-194, doi: https://doi.org/10.1016/j.memsci.2017.09.015.
  24. Y. Liu and J. Wang, "Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis", J. Membr. Sci., Vol. 596, 2020, pp. 117591, doi: https://doi.org/10.1016/j.memsci.2019.117591.
  25. X, Lu, P. Hao, G. Xie, J. Duan, L. Gao, and B. Liu, "A sensor array realized by a single flexible TiO2/POMs film to contactless detection of triacetone triperoxide", Sensors, Vol. 19, No. 4, 2019, pp. 915, doi: https://doi.org/10.3390/s19040915.
  26. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability f or anion exchange membranes", Compos. Part B-Eng., Vol. 164, 2019, pp. 324-332, doi: https://doi.org/10.1016/j.compositesb.2018.11.084.
  27. J. Fu, G. Z. Kyzas, Z. Cai. E. A. Deliyanni, W. Liu, and D. Zhao, "Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: Effects of water quality parameters and predictive modeling", Chem. Eng. J., Vol. 335, 2018, pp. 290-300, doi: https://doi.org/10.1016/j.cej.2017.10.163.
  28. G. Dai, L. Lu, J. Lee, and H. Lee, "Preparation and characterization of Fe/Ni nanocatalyst in a nucleophilic solvent for anion exchange membrane in alkaline electrolysis", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 5, 2021, pp. 293-298, doi: https://doi.org/10.7316/KHNES.2021.32.5.293.
  29. M. I. Khan, A. N. Mondal, B. Tong, C. Jiang, K. Emmanuel, Z. Yang, L. Wu, and T. Xu, "Development of BPPO-based anion exchange membranes for electrodialysis desalination applications", Desalination, Vol. 391, 2016, pp. 61-68, doi: https://doi.org/10.1016/j.desal.2015.11.024.
  30. P. P. Sharm a, S. Gahlot, B. M . Bhil, H . Gupta, and V. Kulshrestha, "An environmentally friendly process for the synthesis of an fGO modified anion exchange membrane for electro-membrane applications", RSC Adv., Vol. 5, 2015, pp. 38712-38721, doi: https://doi.org/10.1039/C5RA04564A.
  31. X. Cheng, J. Wang, Y. Liao, C. Li, and Z. Wei, "Enhanced Conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal", ACS Appl. Mater. Interfaces, Vol. 10, No. 28, 2018, pp. 23774-23782, doi: https://doi.org/10.1021/acsami.8b05298.
  32. F. Xie, X. Gao, J. Hao, H. Yu, Z. Shao, and B. Yi, "Preparation and properties of amorphous TiO2 modified anion exchange membrane by impregnation-hydrolysis method", React. Funct. Polym., Vol. 144, 2019, pp. 104348, doi: https://doi.org/10.1016/j.reactfunctpolym.2019.104348.
  33. P. T. Nonjola, M. K. Mathe, and R. M. Modibedi, "Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles", Int. J. Hydrog. Energy, Vol. 38, No. 12, 2013, pp. 5115-5121, doi: https://doi.org/10.1016/j.ijhydene.2013.02.028.
  34. C. C. Yang, "Synthesis and characterization of the crosslinked PVA/TiO2composite polymer membrane for alkaline DMFC", J. Membr. Sci., Vol. 288, No. 1-2, 2007, pp. 51-60, doi: https://doi.org/10.1016/j.memsci.2006.10.048.
  35. K. H. Gopi, V. M. Dhavale, and S. D. Bhat, "Development of polyvinyl alcohol/chitosan blend anion exchange membrane with mono and di quaternizing agents for application in alkaline polymer electrolyte fuel cells", Mater. Sci. Technol., Vol. 2, No. 2, 2019, pp. 194-202, doi: https://doi.org/10.1016/j.mset.2019.01.010.
  36. C. Li, Y. Song, X. Wang, and Q. Zhang, "Synthesis, characterization and application of S-TiO2/PVDF-g-PSSA composite membrane for improved performance in MFCs", Fuel, Vol. 264, 2020, pp. 116847, doi: https://doi.org/10.1016/j.fuel.2019.116847.
  37. Y. Chen, Z. Li, N. Chen, R. Li, Y. Zhang, K. Li, F. Wang, and H. Zhu, "A new method for improving the conductivity of alkaline membrane by incorporating TiO2-ionic liquid composite particles", Electrochim. Acta, Vol. 255, 2017, pp. 335-346, doi: https://doi.org/10.1016/j.electacta.2017.07.176.
  38. C. Lee, J. Park, Y. Jeon, J. Park, H. Einaga, Y. B. Truong, I. L. Kyratzis, I. Mochida, J. Choi, and Y. Shul, "Phosphate-modified TiO2/ZrO2 nanofibrous web composite membrane for enhanced performance and durability of high-temperature proton exchange membrane fuel cells", Energy Fuels, Vol. 31, No. 7, 2017, pp. 7645-7652, doi: https://doi.org/10.1021/acs.energyfuels.7b00941.
  39. M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review", RSC Adv., Vol. 11, 2021, pp. 18351-18370, doi: https://doi.org/10.1039/D1RA00685A.