Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.6.475

Molecular Dynamics Study of Anion Conducting Ionomer under Excessive Water Condition  

Hoseong, Kang (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
So Young, Lee (Fuel Cell Research Center, Korea Institute of Science and Technology)
Hyoung-Juhn, Kim (Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology)
Chang Hyun, Lee (Energy Engineering Department, College of Engineering, Dankook University)
Chi Hoon, Park (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
Publication Information
Membrane Journal / v.32, no.6, 2022 , pp. 475-485 More about this Journal
Abstract
The continuous excessive consumption of fossil fuels is causing global warming, climate, and environmental crisis. Accordingly, hydrogen energy attracts attention among alternative energies of fossil fuels, because it has the advantage of not emitting pollutants and not having resource restrictions. Therefore, various studies are being conducted on a water electrolysis system for producing hydrogen and a fuel cell system for producing electricity by using hydrogen energy as a fuel. In this study, 3D ionomer models were produced by reflecting the excessive water condition of an anion-conductive ionomer material, which is one of the core materials of water electrolysis systems and fuel cells. Finally, by analyzing the structural stability and performance of the ionomer under an excessively hydrated condition, we suggested a performance improvement factor in the design of an anion conductive ionomer, a key material for water electrolysis systems and fuel cells.
Keywords
hydrogen energy; water electrolysis; fuel cell; molecular dynamics; ionomer;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 H. Sun, P. Ren, and J. Fried, "The COMPASS force field: parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998).
2 J. Choi, J.-H. Jang, J. E. Chae, H.-Y. Park, S. Y. Lee, J. H. Jang, J. Y. Kim, D. Henkensmeier, S. J. Yoo, and K. Y. Lee, "Spirobiindane-based poly (arylene ether sulfone) ionomers for alkaline anion exchange membrane fuel cells", Macromol. Res., 28, 275-281 (2020).   DOI
3 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines", J. Chem. Phys., 21, 1087 (1953).
4 C. Rizzuto, A. Caravella, A. Brunetti, C. H. Park, Y. M. Lee, E. Drioli, G. Barbieri, and E. Tocci, "Sorption and diffusion of CO2/N2 in gas mixture n thermally-rearranged polymeric membranes: A molecular investigation", J. Membr. Sci, 528, 135 (2017).
5 H. Lim, B. Lee, D. Yun, A. Z. Al Munsur, J. E. Chae, S. Y. Lee, H.-J. Kim, S. Y. Nam, C. H. Park, and T.-H. Kim, "Poly (2, 6-dimethyl-1, 4-phenylene oxide) s with various head groups: effect of head groups on the properties of anion exchange membranes", ACS Appl. Mater. Interfaces, 10, 41279 (2018).
6 R. A. Betts, C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy, "El Nino and a record CO2 rise", Nat. Clim. Change., 6, 806 (2016).
7 C.-K. Park, "Climate change; Its impacts and our strategy to address it", J. Korean Soc. Environ. Eng, 30, 1179 (2008).
8 B. Pivovar, N. Rustagi, and S. Satyapal, "Hydrogen at scale (H2@ Scale): Key to a clean, economic, and sustainable energy system", Electrochem Soc Interface, 27, 47 (2018).
9 M. Gotz, J. Lefebvre, F. Mors, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, and T. Kolb, "Renewable Power-to-Gas: A technological and economic review", Renew. Energy, 85, 1371 (2016).
10 M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2", Renewable Sustainable Energy Rev., 69, 292 (2017).
11 H.-S. Cho, W.-C. Cho, and C.-H. Kim, "Low-temperature alkaline water electrolysis", KIC News, 21, 23 (2018).
12 S.-A. Park, E.-K. Lee, J.-W. Lee, S.-K. Lee, J.-S. Moon, T.-W. Kim, and Y.-K. Cheon, "A study on performance characteristic and safety of alkaline water electrolysis system", Trans Korean Hydrogen New Energy Soc., 28, 601 (2017).
13 G.-J. Hwang, K.-S. Kang, H.-J. Han, and J.-W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans Korean Hydrogen New Energy Soc, 18, 95 (2007).
14 K. Moon and D. Pak, "The characteristics of hydrogen production according to electrode materials in alkaline water electrolysis", J. Energy Eng., 24, 34 (2015).
15 F. ezzahra Chakik, M. Kaddami, and M. Mikou, "Effect of operating parameters on hydrogen production by electrolysis of water", Int. J. Hydrogen Energy, 42, 25550 (2017).
16 H. Cho, W. Cho, and C. Kim, "Low-temperature alkaline water electrolysis", J. Ind. Eng. Chem., 21, 23 (2018).
17 M. J. Lavorante, C. Y. Reynoso, and J. I. Franco, "Water electrolysis with Zirfon(R) as separator and NaOH as electrolyte", Desalination Water Treat., 56, 3647 (2015).
18 W.-Y. Chuang, T.-H. Young, D.-M. Wang, R.-L. Luo, and Y.-M. Sun, "Swelling behavior of hydrophobic polymers in water/ethanol mixtures", Polymer, 41, 8339 (2000).
19 C. Y. Ahn and Y. H. Cho, "Pt-based electrode materials and triple phase boundary for polymer electrolyte membrane fuel cells", KIC News, 21, 41 (2018).
20 C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012).
21 V. J. Vasudevan and J. E. McGrath, "Atomistic modeling of amorphous aromatic polybenzoxazoles", Macromolecules, 29, 637 (1996).
22 C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010).
23 J.-S. Lee, and C. H. Park, "Effect of types of force-fields on gas transport thorough polymer membrane", Membr. J., 29, 37 (2019).
24 C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on OHcontaining polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746 (2014).
25 C. H. Park, T.-H. Kim, S. Y. Nam, and Y. T. Hong, "Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition", Int. J. Hydrogen Energy, 44, 2340 (2019).
26 K.-S. Chang, Y.-H. Huang, K.-R. Lee, and K.-L. Tung, "Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study", J. Membr. Sci, 354, 93 (2010).
27 H. Kang and C. H. Park, "Effect of Nafion(R) chain length on proton transport as a binder material", Membr. J., 30, 57 (2020).
28 H. Kang, C. H. Park, and C. H. Lee, "Development of molecular dynamics model for water electrolysis ionomer", Membr. J., 30, 433 (2020).
29 H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998).
30 H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 47 (2016).