Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.1.19

Simultaneous Improvement of Dimensional Stability and Ionic Conductivity of QPAE/TiO2-x Composite Membranes According to TiO2 Content Control for Anion Exchange Membrane Fuel Cells  

KIM, SANG HEE (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
YOO, DONG JIN (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.1, 2022 , pp. 19-27 More about this Journal
Abstract
A series of QPAE/TiO2-x (x = 1, 4, 7 and 10 wt%) organic/inorganic composite membranes were prepared as electrolyte membranes for alkaline anion exchange membrane fuel cells by controlling the content of inorganic filler with quaternized poly(arylene ether) (QPAE) random copolymer. Among the prepared QPAE/TiO2-x organic/inorganic composite membranes, the highest ionic conductivity was 26.6 mS cm-1 at 30℃ in QPAE/TiO2-7 composite membrane, which was improvement over the ionic conductivity value of 6.4 mS cm-1 (at 30℃) of the pristine QPAE membrane. Furthermore, the water uptake, swelling ratio, ionic exchange capacity, and thermal property of QPAE/TiO2-x composite membranes were improved compared to the pristine QPAE membrane. The results of these studies suggest that the fabricated QPAE/TiO2-x composite membranes have good prospects for alkaline anion exchange membrane fuel cell applications.
Keywords
Alkaline fuel cell; Ionic conductivity; Dimensional stability; Composite membrane; Inorganic filler;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 L. I. Olvera, E. Aldeco-Perez, A. Rico-Zavala, L. G. Arriaga, J. A. Avila-Nino, J. Cardenas, R. Gavino, K. S. Perez, and V. H. Lara, "High therm om echanical stability and ion-conductivity of anion exchange membranes based on quaternized modified poly(oxyndoleterphenylene)", Polym. Test, Vol. 95, 2021, pp. 107092, doi: https://doi.org/10.1016/j.polymertesting.2021.107092.   DOI
2 K. H. Lee, J. Y. Chu, A. R. Kim, H. G. Kim, and D. J. Yoo, "Functionalized TiO2 mediated organic-inorganic composite membranes based on quaternized poly(arylene ether ketone) with enhanced ionic conductivity and alkaline stability for alkaline fuel cells", J. Membr. Sci., Vol. 634, 2021, pp. 119435, doi: https://doi.org/10.1016/j.memsci.2021.119435.   DOI
3 P. P. Sharm a, S. Gahlot, B. M . Bhil, H . Gupta, and V. Kulshrestha, "An environmentally friendly process for the synthesis of an fGO modified anion exchange membrane for electro-membrane applications", RSC Adv., Vol. 5, 2015, pp. 38712-38721, doi: https://doi.org/10.1039/C5RA04564A.   DOI
4 G. Dai, L. Lu, J. Lee, and H. Lee, "Preparation and characterization of Fe/Ni nanocatalyst in a nucleophilic solvent for anion exchange membrane in alkaline electrolysis", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 5, 2021, pp. 293-298, doi: https://doi.org/10.7316/KHNES.2021.32.5.293.   DOI
5 C. E. Diesendruck and D. R. Dekel. "Water - a key parameter in the stability of anion exchange membrane fuel cells", Curr. Opion in Electrochem., Vol.9, 2018, pp. 173-178, doi: https://doi.org/10.1016/j.coelec.2018.03.019.   DOI
6 Y. Liu and J. Wang, "Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis", J. Membr. Sci., Vol. 596, 2020, pp. 117591, doi: https://doi.org/10.1016/j.memsci.2019.117591.   DOI
7 X, Lu, P. Hao, G. Xie, J. Duan, L. Gao, and B. Liu, "A sensor array realized by a single flexible TiO2/POMs film to contactless detection of triacetone triperoxide", Sensors, Vol. 19, No. 4, 2019, pp. 915, doi: https://doi.org/10.3390/s19040915.   DOI
8 S. K. Ryu, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120-160 ℃'', Energy, Vol. 238, 2022, pp. 121791, doi: https://doi.org/10.1016/j.energy.2021.121791.   DOI
9 D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., Vol. 60, No. 1, 2010, pp. 85-92, doi: https://doi.org/10.1002/pi.2914.   DOI
10 D. Yoo, H. Kim, S. Oh, and K. Park, "Durability Evaluation of air-cooled proton exchange membrane fuel cells stacks by repeated start-up/shut-down", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 5, 2021, pp.315-323, doi: https://doi.org/10.7316/KHNES.2021.32.5.315.   DOI
11 K. Rambabu, G. Bharath, A. F. Arangadi, S. Velu, F. Banat, and P. L. Show, "ZrO2 incorporated polysulfone anion exchange membranes for fuel cell applications", Int. J. Hydrog. Energy, Vol. 45, 2020, pp. 29668-29680, doi: https://doi.org/10.1016/j.ijhydene.2020.08.175.   DOI
12 C. Simari, E. Lufrano, N. Godbert, D. Gournis, L. Coppola, and I. Nicotera. "Titanium dioxide grafted on graphene oxide: Hybrid nanofiller for effective and low-cost proton exchange membranes", Nanomaterials, Vol. 10, No. 8, 2020, pp. 1572, doi: https://doi.org/10.3390/nano10081572.   DOI
13 L. Zhu, J. Pan, C. M. Christensen, B. Lin, and M. A. Hickner, "Functionalization of Poly(2,6-dimethyl-1,4-phenylene oxide)s with Hindered Fluorene Side Chains for Anion Exchange Membranes", Macromolecules, Vol. 49, No. 9, 2016, pp. 3300-3309, doi: https://doi.org/10.1021/acs.macromol.6b00578.   DOI
14 M. I. Khan, A. N. Mondal, B. Tong, C. Jiang, K. Emmanuel, Z. Yang, L. Wu, and T. Xu, "Development of BPPO-based anion exchange membranes for electrodialysis desalination applications", Desalination, Vol. 391, 2016, pp. 61-68, doi: https://doi.org/10.1016/j.desal.2015.11.024.   DOI
15 X. Cheng, J. Wang, Y. Liao, C. Li, and Z. Wei, "Enhanced Conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal", ACS Appl. Mater. Interfaces, Vol. 10, No. 28, 2018, pp. 23774-23782, doi: https://doi.org/10.1021/acsami.8b05298.   DOI
16 F. Xie, X. Gao, J. Hao, H. Yu, Z. Shao, and B. Yi, "Preparation and properties of amorphous TiO2 modified anion exchange membrane by impregnation-hydrolysis method", React. Funct. Polym., Vol. 144, 2019, pp. 104348, doi: https://doi.org/10.1016/j.reactfunctpolym.2019.104348.   DOI
17 S. H. Kim, K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Enhanced Hydroxide conductivity and dimensional stability with blended membranes containing hyperbranched PAES/Linear PPO as anion exchange membranes", Polymers, Vol. 12, No. 12, 2020, pp. 3011, doi: https://doi.org/10.3390/polym12123011.   DOI
18 C. M. Tuan and D. Kim, "Anion-exchange membranes based on poly(arylene ether ketone) with pendant quaternary ammonium groups for alkaline fuel cell application", J. Membr. Sci., Vol. 511, 2016, pp. 143-150, doi: https://doi.org/10.1016/j.memsci.2016.03.059.   DOI
19 J. Fu, G. Z. Kyzas, Z. Cai. E. A. Deliyanni, W. Liu, and D. Zhao, "Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: Effects of water quality parameters and predictive modeling", Chem. Eng. J., Vol. 335, 2018, pp. 290-300, doi: https://doi.org/10.1016/j.cej.2017.10.163.   DOI
20 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability f or anion exchange membranes", Compos. Part B-Eng., Vol. 164, 2019, pp. 324-332, doi: https://doi.org/10.1016/j.compositesb.2018.11.084.   DOI
21 Y, Yang, N. Ye, S. Chen, D. Zhang, R. Wan, X. Peng, and R. He, "Surfactant-assisted incorporation of ZrO2 nanoparticles in quaternized poly(2,6-dimethyl-1,4-phenylene oxide) for superior properties of anion exchange membranes", Renew. Energ., Vol. 166, 2020, pp. 45-55, doi: https://doi.org/10.1016/j.renene.2020.11.121.   DOI
22 S. K. Jeong, J. S. Lee, S. H. Woo, J. A. Seo, and B. R. Min, "Characterization of anion exchange membrane containing epoxy ring and C-Cl bond quaternized by various amine groups for application in fuel cells", Energies, Vol. 8, No. 7, 2015, pp. 7084-7099, doi: https://doi.org/10.3390/en8077084.   DOI
23 J. Pan, H. Zhu, H. Cao, B. Wang, J. Zhao, Z. Sun, and F. Yan, "Flexible cationic side chains for enhancing the hydroxide ion conductivity of olefinic-type copolymer-based anion exchange membranes: An experimental and theoretical study", J. Membr. Sci., Vol 620, 2021, pp. 118794, doi: https://doi.org/10.1016/j.memsci.2020.118794.   DOI
24 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustain. Chem. Eng., Vol. 9, No. 26, 2021, pp. 8824-8834, doi: https://doi.org/10.1021/acssuschemeng.1c01978.   DOI
25 B. Hu, L. Miao, Y. Zhao, and C. Lu, "Azide-assisted crosslinked quaternized polysulfone with reduced grapheneoxide for highly stable anion exchange membranes", J. Membr. Sci., Vol. 530, 2017, pp. 84-94, doi: https://doi.org/10.1016/j.memsci.2017.02.023.   DOI
26 P.F. Msomi, P. T. Nonjola, P. G. Ndungu, and J. Ramontja, "Poly(2,6-dimethyl-1,4-phenylene)/polysulfone anion exchange membrane blended with TiO2 with improved water uptake for alkaline fuel cell application", Int. J. Hydrog. Energy, Vol. 45, No. 53, 2020, pp. 9465-29476, doi:https://doi.org/10.1016/j.ijhydene.2020.08.012.   DOI
27 K. H. Lee, J. Y. Chu, A. R. Kim, D. J. Yoo, "Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application". Int. J. Energy Res., 2019, Vol. 43, No 10, 5333-5345, doi: https://doi.org/10.1002/er.4610.   DOI
28 M. Qiu, B. Zhang, H. Wu, L. Cao, X. He, Y. Li, J. Li, M. Xu, and Z. Jiang, "Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes", J. Membr. Sci., Vol. 573, No. 1, 2019, pp. 1-10, doi: https://doi.org/10.1016/j.memsci.2018.11.070.   DOI
29 C. C. Yang, "Synthesis and characterization of the crosslinked PVA/TiO2composite polymer membrane for alkaline DMFC", J. Membr. Sci., Vol. 288, No. 1-2, 2007, pp. 51-60, doi: https://doi.org/10.1016/j.memsci.2006.10.048.   DOI
30 J. Ren, Y. Dong, J. Dai, H. Hu, Y. Zhu, and X. Teng, "A novel chloromethylated/quaternized poly(sulfone)/poly(vinylidene fluoride) anion exchange membrane with ultra-low vanadium permeability for all vanadium redox flow battery", J. Membr. Sci., Vol. 544, 2017, pp. 186-194, doi: https://doi.org/10.1016/j.memsci.2017.09.015.   DOI
31 K. H. Gopi, V. M. Dhavale, and S. D. Bhat, "Development of polyvinyl alcohol/chitosan blend anion exchange membrane with mono and di quaternizing agents for application in alkaline polymer electrolyte fuel cells", Mater. Sci. Technol., Vol. 2, No. 2, 2019, pp. 194-202, doi: https://doi.org/10.1016/j.mset.2019.01.010.   DOI
32 C. Li, Y. Song, X. Wang, and Q. Zhang, "Synthesis, characterization and application of S-TiO2/PVDF-g-PSSA composite membrane for improved performance in MFCs", Fuel, Vol. 264, 2020, pp. 116847, doi: https://doi.org/10.1016/j.fuel.2019.116847.   DOI
33 Y. Chen, Z. Li, N. Chen, R. Li, Y. Zhang, K. Li, F. Wang, and H. Zhu, "A new method for improving the conductivity of alkaline membrane by incorporating TiO2-ionic liquid composite particles", Electrochim. Acta, Vol. 255, 2017, pp. 335-346, doi: https://doi.org/10.1016/j.electacta.2017.07.176.   DOI
34 C. Lee, J. Park, Y. Jeon, J. Park, H. Einaga, Y. B. Truong, I. L. Kyratzis, I. Mochida, J. Choi, and Y. Shul, "Phosphate-modified TiO2/ZrO2 nanofibrous web composite membrane for enhanced performance and durability of high-temperature proton exchange membrane fuel cells", Energy Fuels, Vol. 31, No. 7, 2017, pp. 7645-7652, doi: https://doi.org/10.1021/acs.energyfuels.7b00941.   DOI
35 M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review", RSC Adv., Vol. 11, 2021, pp. 18351-18370, doi: https://doi.org/10.1039/D1RA00685A.   DOI
36 P. T. Nonjola, M. K. Mathe, and R. M. Modibedi, "Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles", Int. J. Hydrog. Energy, Vol. 38, No. 12, 2013, pp. 5115-5121, doi: https://doi.org/10.1016/j.ijhydene.2013.02.028.   DOI
37 D. E. Han and D. J. Yoo, "Mesoporous SiO2 mediated polybenzimidazole composite membranes for HT-PEMFC application", Trans. Korean Hydrogen New Energy Soc., Vol. 30, No. 2, 2019, pp. 128-135, doi: https://doi.org/10.7316/KHNES.2019.30.2.128.   DOI
38 A. R. Kim, M. Vinothkannan, K. H. Lee, J. Y. Chu, B. H. Park, M. K. Han, and D. J. Yoo, "Enhanced performance and durability of composite membranes containing anatase titanium oxide for fuel cells operating under low relative humidity", Int. J. Energy Res., 2021, doi: https://doi.org/10.1002/er.7477.   DOI
39 L. Sun, J. Guo, Q. Xu, D. Chu, and R. Chen, "Novel nanostructured high-performance anion exchange ionomers for anion exchange membrane fuel cells", J. Power Sources, Vol. 202, 2012, pp. 70-77, doi: https://doi.org/10.1016/j.jpowsour.2011.11.023.   DOI