DOI QR코드

DOI QR Code

Development of Intermediate Temperature Fuel Cell Using a Solid Proton Conductor

고체 수소이온 전도체를 이용한 중온형 연료전지 개발

  • Seo, Dong-Ho (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Hong-Rok (Department of Chemical Engineering, Yonsei University) ;
  • Shakkthivel, P. (Department of Chemical Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical Engineering, Yonsei University)
  • Published : 2008.02.28

Abstract

Because of an emerging importance of clean energy, fuel cells are attract more attention due to their ability to produce high efficient power without any harmful emission. Fuel cells are energy conversion device with directly convert chemical energy into electrical energy by the chemical reactions, which have potential applications in automobile, spacecraft, stationary, industrial and home appliances. Recently there are gaining demand to develop an intermediate temperature fuel cell and available proton conductors at $200{\sim}500^{\circ}C$, which promising operating temperatures range for both material science and energy conversion processes. In this paper, we have reviewed electrochemical properties and current technology of solid state proton conductors. In addition, development of intermediate temperature fuel cell using the perovskite-type solid protonic conductor is also discussed.

청정에너지의 중요성이 부각됨에 따라 수소연료를 활용한 고효율, 무공해 전력 공급원인 연료전지에 대한 관심이 증가하고 있다. 연료전지는 전기화학 반응에 의한 화학에너지를 직접 전기에너지로 변환시키는 장치로 자동차, 우주항공, 산업 및 가정용 발전 등에 적용할 수 있는 잠재력이 있다. 최근 재료 및 에너지 변환공정 차원에서 바람직한 $200{\sim}500^{\circ}C$의 온도범위에서 작동하는 중온형 연료전지에 대한 새로운 인식과 이 온도범위에서 사용 가능한 수소이온 전도성 물질의 개발 필요성이 요구되고 있다. 본 논문은 고체 수소이온 전도체의 특성과 기술 현황을 소개하고, perovskite형 고체 무기 산화물을 이용한 중온형 연료전지 응용에 관한 연구에 대하여 고찰하였다.

Keywords

References

  1. Sossina M. Haile, 'Fuel cell materials and components' Acta materialia, 51, 5981 (2003) https://doi.org/10.1016/j.actamat.2003.08.004
  2. C. Bernay, M. Marchand, 'Prospects of different fuel cell technologies for vehicle applications' Journal of Power Source, 108, 139 (2002) https://doi.org/10.1016/S0378-7753(02)00029-0
  3. Mark C. William, "Fuel Cell Handbook", 7 ed., EG&G Technical services inc. (2004)
  4. M. Doyle, G. Rajendran, "Handbook of Fuel Cells Fundamentals Technology and Applicatons", vol. 3, John Wiley & Sons Ltd (2003)
  5. Paola Costamagna, Superamaniam Srinivasan, 'Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 part 1. Fundamental scientific aspects' Journal of Power Source, 102, 242 (2001) https://doi.org/10.1016/S0378-7753(01)00807-2
  6. Masayuki Nogami, Ritsuko Nagao, Wang Cong and Yoshihiro Abe, 'The United States Department of Energy's high temperature, low relative humidity membrane program' Journal of Sol-Gel Science and Technology, 13, 933 (1998) https://doi.org/10.1023/A:1008635626256
  7. M. Aparicio, L. C. Klein, 'Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cell' Journal of Sol-Gel Science and Technology, 28, 199 (2003) https://doi.org/10.1023/A:1026029132719
  8. Truls Norby, 'Solid-state protonic conductors: principles, properties, progress and prospects' Solid State Ionics, 125, 1 (1999) https://doi.org/10.1016/S0167-2738(99)00152-6
  9. Giulio Alberti, Mario Casciola, 'Solid state protonic conductors, present main applications and future prospects' Solid State Ionics, 145, 3 (2001) https://doi.org/10.1016/S0167-2738(01)00911-0
  10. K. Sundmacher, L. K. Rihko-Struckmann, V. Galvita, 'Solid electrolyte membrane reactors: Status and trends' Catalysis today, 104, 185 (2005) https://doi.org/10.1016/j.cattod.2005.03.074
  11. Jianlu Zhang, 'High temperature PEM fuel cell' Journal of Power Sources, 160, 872 (2006) https://doi.org/10.1016/j.jpowsour.2006.05.034
  12. I. Ahmed , S.G.Eriksson, 'Proton conductivity and low temperature structure of In-doped $BaZrO_3$' Solid State Ionics, 177, 2357 (2006) https://doi.org/10.1016/j.ssi.2006.05.030
  13. G. Alberti, M. Casciola, L. Massineli, B. Bauer, 'Polymeric proton conducting membranes for medium temperature fuel cell(110-$160^{\circ}C$)' Journal of membrane Science, 185, 73 (2001) https://doi.org/10.1016/S0376-7388(00)00635-9
  14. Naoki Ito, Masahiko Iijima, Kenji Kimura, Satoshi Iguchi, 'New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte' Journal of Power Sources, 152, 200 (2005) https://doi.org/10.1016/j.jpowsour.2005.01.009
  15. K. D. Kreuer, 'On the development of proton conducting materials for technological application' Solid State Ionics, 97, 1 (1997) https://doi.org/10.1016/S0167-2738(97)00082-9
  16. Sossina M. Haile, 'Materials for fuel cell' Materials Today, March, 24 (2003)
  17. K. D. Kreuer, 'On the complexity of proton conduction phenomena' Solid State Ionics, 97, 149 (2000)
  18. K. D. Kreuer, St. Adams, W. Munch, 'Proton conducting alkaline earth zirconate and titanates for high drain electrochemical applications' Solid State Ionics, 145, 295 (2001) https://doi.org/10.1016/S0167-2738(01)00953-5
  19. W. Munch, K. D. Kreuer, G. Seifert, J. Maier, 'proton diffusion in perovskites: comparison between $BaCeO_3,\;BaZrO_3,\;SrTiO_3\;,and\;CaTiO_3$ using quantum molecular dynamics' Solid State Ionics, 145, 183 (2000)
  20. K. D. Kreuer, A. Fuchs, J. Maier, 'H/D isotope effect of proton conductivity and proton conduction mechanism in oxides' Solid State Ionics, 77, 157 (1995) https://doi.org/10.1016/0167-2738(94)00265-T
  21. Hiroyasu Iwahara, 'Proton conducting ceramics and their applications' Solid State Ionics, 86-88, 9 (1996) https://doi.org/10.1016/0167-2738(96)00087-2
  22. Hiroyasu Iwahara, 'Technological challenges in the application of proton conducting ceramics' Solid State Ionics, 77, 289 (1995) https://doi.org/10.1016/0167-2738(95)00051-7
  23. K. D. Kreuer, 'Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides' Solid State Ionics, 125, 285 (1999) https://doi.org/10.1016/S0167-2738(99)00188-5
  24. K. D. Kreuer, 'Proton-Conducting Oxides' Annual Review of materials research, 33, 333 (2003) https://doi.org/10.1146/annurev.matsci.33.022802.091825
  25. F. Giannici, A. Longo, F. Deganello, A. Balerna, A. S. Arico, A. Martorana, 'Local environment of Barium, Cerium and Yttrium in $BeCe_{1-x}Y_xO_{3-{\delta}}$ ceramic protonic conductors' Solid State Ionics, 178, 587 (2007) https://doi.org/10.1016/j.ssi.2007.01.015
  26. Guilin Ma, Tetsuo Shimura, Hiroyasu Iwahara, 'Simultaneous doping with $La^{3+}\;and\;Y^{3+}\;for\;Ba^{2+}-\;and\;Ce^{4+}-$ sites in $BaCeO_3$ and the ionic conduction' Solid State Ionics, 120, 51 (1999) https://doi.org/10.1016/S0167-2738(99)00005-3
  27. Koji Katahira, Yoshirou Kohchi, Tetsuo Shimura, Hiroyasu Iwahara , 'Protonic conduction in Zr-substituted $BaCeO_3$' Solid State Ionics, 138, 91 (2000) https://doi.org/10.1016/S0167-2738(00)00777-3
  28. Rinlee Butch Cervera, Yukiko Oyama, Shu Yamaguchi, 'Low temperature synthesis of nanocrystalline proton conducting $BaZr_{0.8}Y_{0.2}O_{3-{\delta}}$ by sol-gel method' Solid State Ionics, 178, 569 (2007) https://doi.org/10.1016/j.ssi.2007.01.010
  29. T. Schneller, T. Schober, 'Chemical solution deposition prepared dense proton conducting Y-doped $BaZrO_3$ thin films for SOFC and sensor device' Solid State Ionics, 164, 131 (2003) https://doi.org/10.1016/S0167-2738(03)00308-4
  30. I. Ahmed, S-G. Eriksson, E. Ahlberg, 'Structural study and proton conductivity in Yb-doped $BaZrO_3$' Solid State Ionics, 178, 515 (2007) https://doi.org/10.1016/j.ssi.2006.11.011
  31. M. Rikukawa, K. Sanui, 'proton-conducting polymer electrolyte membranes based on hydrocarbon polymers' Progress in Polymer Science, 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  32. Karl kordesch, Gunter Simader, "Fuel Cells and Their Applications", VCH press, 72 (1998)
  33. Ronghuan He, Qingfeng Li, Gang Xiao, Niels J. Bjerrum, 'proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors' Journal of Membrane Science, 226, 169 (2003) https://doi.org/10.1016/j.memsci.2003.09.002
  34. Jianlu Zhang, Yanghua Tang, Chaojie Song, Jiujun Zhang, 'poly-benimidazole membrane- based PEM fuel cell in the temperature range of $120-200^{\circ}C$' Journal of Power Sources, 172, 163 (2007) https://doi.org/10.1016/j.jpowsour.2007.07.047
  35. M. T. Colomer, 'Nanoporous anatase ceramic membranes as fast-proton-conducting materials' Journal of the European Ceramic Society, 26,1231 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.01.035
  36. A. Sacca, A. Carbone, E. Passalacqua, '$Nafion-TiO_2$ hybrid membranes for medium temperature polymer electrolyte fuel cells(PEMFCs)' Journal of Power Sources, 152, 16(2005) https://doi.org/10.1016/j.jpowsour.2004.12.053
  37. Gopinathan M. Anilkumar, Satoshi Nakazawa, Tatsuya Okubo, Takeo Yamaguchi, 'Proton conducting phosphated zirconia-sulfonated polyether sulfone nanohybrid electrolyte for low humidity, wide-temperature PEMFC operation' Electrochemistry Communications, 8, 133 (2006) https://doi.org/10.1016/j.elecom.2005.10.025
  38. Ph. Colomban, "Proton conductors", Cambridge Univ. press (1992)
  39. T. Norby, Y. Larring, 'Concentration and transport of protons in oxides' Current Opinion Solid State Materials & Science, 2, 593 (1997) https://doi.org/10.1016/S1359-0286(97)80051-4
  40. W. Grover Coors, 'protonic ceramic fuel cells for high-efficiency operation with methane' Journal of Power Sources, 118, 150 (2003) https://doi.org/10.1016/S0378-7753(03)00072-7

Cited by

  1. Preparation of silica-based proton conductors for intermediate temperature fuel cells vol.26, pp.4, 2009, https://doi.org/10.1007/s11814-009-0169-8
  2. Multicomponent Proton Conducting Ceramics of SiO[sub 2]–TiO[sub 2]–ZrO[sub 2]–P[sub 2]O[sub 5]–Bi[sub 2]O[sub 3] for an Intermediate Temperature Fuel Cell vol.8, pp.1, 2011, https://doi.org/10.1115/1.4002313