R & D Trends on Direct Formic Acid Fuel Cells

직접 개미산 연료전지의 연구동향

  • Kwon, Yongchai (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Han, Jonghee (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jinsoo (Department of Chemical Engineering, Green Energy Center, Kyung Hee University)
  • 권용재 (인하공업전문대학교 화공환경과) ;
  • 한종희 (한국과학기술연구원 연료전지센터) ;
  • 김진수 (경희대학교 화학공학과, 그린에너지센터)
  • Received : 2008.11.20
  • Published : 2008.12.10

Abstract

Recently, as a demand for the portable device is surged, there are needs to develop a new fuel cell system for replacing the conventionally used secondary battery. For this purpose, it becomes important to develop direct formic acid fuel cell (DFAFC) that uses formic acid as a fuel. The formic acid can offer typical advantages such as excellent non-toxicity of the level to be used as food additive, smaller crossover flux through electrolyte, and high reaction capability caused by high theoretical electromotive force (EMF). With the typical merits of formic acid, the efforts for optimizing reaction catalyst and cell design are being made to enhance performance and long term stability of DFAFC. As a result, to date, the DFAFC having the power density of more than $300mW/cm^2$ was developed. In this paper, basic performing theory and configuration of DFAFC are initially introduced and future opportunities of DFAFC including the development of catalyst for the anode electrode and electrolyte, and design for the optimization of cell structure are discussed.

최근 휴대용 전자기기 수요의 급증에 따라 기존에 사용되던 2차 전지를 대체할 수 있는 친환경 고효율 연료전지 개발의 필요성이 증대되었다. 이러한 목적으로 개미산을 연료로 이용하는 직접 개미산 연료전지가 부각되고 있다. 식품첨가물로 사용될 정도의 안정성, 전해질을 통과하는 연료의 최소화된 crossover, 큰 기전력 발생에 의한 반응활성 최대화 등이 개미산이 가지고 있는 고유의 장점들이며, 이와 더불어 반응 촉매 및 전지 디자인을 최적화 하려는 노력에 의해 직접 개미산 연료전지의 성능 및 안정성이 향상되고 있다. 이러한 개발을 통해 현재까지 약 $300mW/cm^2$ 이상의 전력밀도를 나타내는 전지 개발이 이루어졌다. 본 총설에서는 개미산 연료전지의 기본 구동 원리와 전지 구조에 대한 소개 및 직접 개미산 연료전지 성능 향상에 영향을 미치는 인자들인 연료극 촉매 및 전해질 개발, 최적화된 전지 구조 디자인 등의 개발 현황 및 앞으로 나아갈 방향에 대해 논의하고자 한다.

Keywords

References

  1. S. B. Brummer, J. Phys. Chem., 69, 1365 (1965).
  2. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 44, 1 (1973). https://doi.org/10.1016/S0022-0728(73)80508-X
  3. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 45, 205 (1973). https://doi.org/10.1016/S0022-0728(73)80158-5
  4. J. Clavlier, R. Parsons, R. Durand, C. Lamy, and J. M Leger, J. Electroanal. Chem. Interfacial Electrochem., 124, 321 (1981). https://doi.org/10.1016/S0022-0728(81)80311-7
  5. C. Lamy and J. M. Leger, J. Chim. Phys. Phys.-Chem. Biol., 88, 1649 (1991). https://doi.org/10.1051/jcp/1991881649
  6. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 44, 239 (1973). https://doi.org/10.1016/S0022-0728(73)80250-5
  7. H. A. Gasteiger, N. Markovic, R. Philip, and E. J. Cairns, Electrochim. Acta, 39, 1825 (1994). https://doi.org/10.1016/0013-4686(94)85171-9
  8. A. H. Taylor, S. Kirkland, and S. B. Brummer, Trans. Faraday Soc., 67, 819 (1971). https://doi.org/10.1039/tf9716700819
  9. S. Motoo and M. Watanabe, A. Capon, and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 69, 429 (1976). https://doi.org/10.1016/S0022-0728(76)80145-3
  10. M. Watanabe, H. Horiuchi, and S. Motoo, J. Electroanal. Chem. Interfacial Electrochem., 250, 117 (1988). https://doi.org/10.1016/0022-0728(88)80197-9
  11. A. Capon and R. Parsons, J. Electroanal. Chem. Interfacial Electrochem., 65, 285 (1975). https://doi.org/10.1016/S0022-0728(75)80074-X
  12. M. J. Llorca, J. M. Feliu, A. Aldaz, and J. Clavilier, J. Electroanal. Chem., 13, 6287 (1997).
  13. M. Baldauf and D. M. Kolb, J. Phys. Chem., 100, 11375 (1996). https://doi.org/10.1021/jp952859m
  14. P. Waszczuk, T. M. Barnard, C. Rice, R. I. Masel, and A. Wieckowski, Electrochem. Comm., 4, 599 (2002). https://doi.org/10.1016/S1388-2481(02)00386-7
  15. C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, and T. Barnard, J. Power Sources, 111, 83 (2002). https://doi.org/10.1016/S0378-7753(02)00271-9
  16. S. Ha, C. A. Rice, R. I. Masel, and A. Wieckowski, J. Power Sources, 112, 655 (2002). https://doi.org/10.1016/S0378-7753(02)00453-6
  17. M. Weber, J.-T. Wang, S. Wasmus, and R. F. Savilnell, J. Electrochem. Soc., 143, L158 (1996). https://doi.org/10.1149/1.1836961
  18. Y.-W. Rhee, S. Ha, and R. I. Masel, J. Power Sources, 117, 35 (2003). https://doi.org/10.1016/S0378-7753(03)00352-5
  19. C. Rice, S. Ha, and R. I. Masel, J. Power Sources, 115, 229 (2003). https://doi.org/10.1016/S0378-7753(03)00026-0
  20. X. Yu and P. G. Pickup, J. Power Sources, 182, 124 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.075
  21. J. H. Choi, K. J. Jeong, Y. Dong, J. H. Han, T. H. Im, J. S. Lee, and Y. E. Sung, J. Power Sources, 163, 71 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.072
  22. X. C. Zhou, W. Xing, C. P. Liu, and T. H. Lu, Electrochem. Commun., 9, 1469 (2007). https://doi.org/10.1016/j.elecom.2007.01.045
  23. S. Y. Uhm, S. T. Chung, and J. Y. Lee, Electrochem. Commun., 9, 2027 (2007). https://doi.org/10.1016/j.elecom.2007.05.029
  24. E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, C. Korzeniewski, F. J. DiSalvo, and H. D. Abruna, J. Am. Chem. Soc., 126, 4043 (2004). https://doi.org/10.1021/ja038497a
  25. L. R. Alden, D. K. Han, F. Matsumoto, and H. D. Abruna, Chem. Mater., 18, 5591 (2006). https://doi.org/10.1021/cm060927j
  26. A. V. Tripkovic, K. D. Popovic, R. M. Stevanovic, R. Socha, and A. Kowal, Electrochem. Commun., 8, 1492 (2006). https://doi.org/10.1016/j.elecom.2006.07.005
  27. E. Herrero, A. Fernandez-Vega, J. M. Feliu, and A. Aldez, J. Electroanal. Chem., 350, 73 (1993). https://doi.org/10.1016/0022-0728(93)80197-P
  28. X. Xia and T. Iwasita, J. Electrochem. Soc., 140, 2559 (1993). https://doi.org/10.1149/1.2220862
  29. S. Ha, R. Larsen, Y. Zhu, and R. I. Masel, Fuel Cells, 4, 337 (2004). https://doi.org/10.1002/fuce.200400052
  30. R. Larsen, S. Ha, J. Zakzeski, and R. I. Masel, J. Power Sources, 157, 78 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.066
  31. Y. Zhu, Z. Kahn, and R. I. Masel, J. Power Sources, 139, 15 (2005). https://doi.org/10.1016/j.jpowsour.2004.06.054
  32. Y. Zhu, S. Ha, and R. I. Masel, J. Power Sources, 130, 8 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.051
  33. W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, and A. Wieckowski, J. Phys. Chem. B, 110, 13393 (2006). https://doi.org/10.1021/jp061690h
  34. M. Tian and B. E. Conway, J. Electroanal. Chem., 581, 176 (2005). https://doi.org/10.1016/j.jelechem.2004.12.029
  35. M. Baldauf and D. M. Kolb, J. Phys. Chem., 100, 11375 (1996). https://doi.org/10.1021/jp952859m
  36. W. S. Jung, J. H. Han, and S. Ha, J. Power Sources, 173, 53 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.023
  37. J. D. Lovic, A. V. Tripkovic, S. L. J. Gojkovic, K. D. Popovic, D. C. Tripkovic, P. Olszewski, and A. Kowal, J. Electroanal. Chem., 581, 294 (2005). https://doi.org/10.1016/j.jelechem.2005.05.002
  38. S. Ha, R. Larsen, and R. I. Masel, J. Power Sources, 144, 28 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.031
  39. L. L. Zhang, T. H. Lu, J. C. Bao, Y. W. Tang, and C. Li, Electrochem. Commun., 8, 1625 (2006). https://doi.org/10.1016/j.elecom.2006.07.033
  40. L. L. Zhang, Y. W. Tang, J. C. Bao, T. H. Lu, and C. Li, J. Power Sources, 162, 177 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.005
  41. K. J. Jeong, C. A. Miesse, J. H. Choi, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T. H. Im, and S. A. Hong, J. Power Sources, 168, 119 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.062
  42. C. Song, M. Khanfar, and P. G. Pickup, J. Appl. Electrochem., 36, 339 (2006). https://doi.org/10.1007/s10800-005-9071-1
  43. X. Wang, J. M. Hu, and I. M. Hsing, J. Electroanal. Chem., 562, 73 (2004). https://doi.org/10.1016/j.jelechem.2003.08.010
  44. J. Yeom, R. S. Jayashree, C. Rastogi, M. A. Shannon, and P. J. A. Kenis, J. Power Sources, 160, 1058 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.066
  45. J. Yeom, G. Z. Mozsgai, B. R. Flachsbart, E. R. Choban, A. Asthana, M. A. Shannon, and P. J. A. Kenis, Sens. Actuators B: Chem., 107, 882 (2005). https://doi.org/10.1016/j.snb.2004.12.050
  46. F. L. Chen, M. H. Chang, and M. K. Lin, Electrochim. Acta, 52, 2506 (2007). https://doi.org/10.1016/j.electacta.2006.09.011
  47. S. Ha, B. Adams, and R. I. Masel, J. Power Sources, 128, 119 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.071