• 제목/요약/키워드: Frequentist Coverage Probability

검색결과 21건 처리시간 0.019초

Reference Priors in a Two-Way Mixed-Effects Analysis of Variance Model

  • 장인홍;김병휘
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.317-328
    • /
    • 2002
  • We first derive group ordering reference priors in a two-way mixed-effects analysis of variance (ANOVA) model. We show that posterior distributions are proper and provide marginal posterior distributions under reference priors. We also examine whether the reference priors satisfy the probability matching criterion. Finally, the reference prior satisfying the probability matching criterion is shown to be good in the sense of frequentist coverage probability of the posterior quantile.

  • PDF

Noninformative Priors for the Power Law Process

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Statistical Society
    • /
    • 제31권1호
    • /
    • pp.17-31
    • /
    • 2002
  • This paper considers noninformative priors for the power law process under failure truncation. Jeffreys'priors as well as reference priors are found when one or both parameters are of interest. These priors are compared in the light of how accurately the coverage probabilities of Bayesian credible intervals match the corresponding frequentist coverage probabilities. It is found that the reference priors have a definite edge over Jeffreys'prior in this respect.

Noninformative Priors for Stress-Strength System in the Burr-Type X Model

  • Kim, Dal-Ho;Kang, Sang-Gil;Cho, Jang-Sik
    • Journal of the Korean Statistical Society
    • /
    • 제29권1호
    • /
    • pp.17-27
    • /
    • 2000
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X model. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior as well as the Jeffreys prior are the second order matching prior. The propriety of posterior under the noninformative priors is proved. The frequentist coverage probabilities are investigated for samll samples via simulation study.

  • PDF

Noninformative Priors in Freund's Bivariate Exponential Distribution : Symmetry Case

  • 조장식;백승욱;김희재
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.235-242
    • /
    • 2002
  • In this paper, we develop noninformative priors that are used for estimating the ratio of failure rates under Freund's bivariate exponential distribution. A class of priors is found by matching the coverage probabilities of one-sided Baysian credible interval with the corresponding frequentist coverage probabilities. Also the propriety of posterior under the noninformative priors is proved and the frequentist coverage probabilities are investigated for small samples via simulation study.

  • PDF

Development of Noninformative Priors in the Burr Model

  • Cho, Jang-Sik;Kang, Sang-Gil;Baek, Sung-Uk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권1호
    • /
    • pp.83-92
    • /
    • 2003
  • In this paper, we derive noninformative priors for the ratio of parameters in the Burr model. We obtain Jeffreys' prior, reference prior and second order probability matching prior. Also we prove that the noninformative prior matches the alternative coverage probabilities and a HPD matching prior up to the second order, respectively. Finally, we provide simulated frequentist coverage probabilities under the derived noninformative priors for small and moderate size of samples.

  • PDF

Development of Matching Priors for P(X < Y) in Exprnential dlstributions

  • Lee, Gunhee
    • Journal of the Korean Statistical Society
    • /
    • 제27권4호
    • /
    • pp.421-433
    • /
    • 1998
  • In this paper, matching priors for P(X < Y) are investigated when both distributions are exponential distributions. Two recent approaches for finding noninformative priors are introduced. The first one is the verger and Bernardo's forward and backward reference priors that maximizes the expected Kullback-Liebler Divergence between posterior and prior density. The second one is the matching prior identified by matching the one sided posterior credible interval with the frequentist's desired confidence level. The general forms of the second- order matching prior are presented so that the one sided posterior credible intervals agree with the frequentist's desired confidence levels up to O(n$^{-1}$ ). The frequentist coverage probabilities of confidence sets based on several noninformative priors are compared for small sample sizes via the Monte-Carlo simulation.

  • PDF

Developing Noninformative Priors for the Common Mean of Several Normal Populations

  • Kim, Yeong-Hwa;Sohn, Eun-Seon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.59-74
    • /
    • 2004
  • The paper considers the Bayesian interval estimation for the common mean of several normal populations. A Bayesian procedure is proposed based on the idea of matching asymptotically the coverage probabilities of Bayesian credible intervals with their frequentist counterparts. Several frequentist procedures based on pivots and P-values are introduced and compared with Bayesian procedure through simulation study. Both simulation results demonstrate that the Bayesian procedure performs as well or better than any available frequentist procedure even from a frequentist perspective.

  • PDF

Confidence Intervals for the Difference of Binomial Proportions in Two Doubly Sampled Data

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.309-318
    • /
    • 2010
  • The construction of asymptotic confidence intervals is considered for the difference of binomial proportions in two doubly sampled data subject to false-positive error. The coverage behaviors of several likelihood based confidence intervals and a Bayesian confidence interval are examined. It is shown that a hierarchical Bayesian approach gives a confidence interval with good frequentist properties. Confidence interval based on the Rao score is also shown to have good performance in terms of coverage probability. However, the Wald confidence interval covers true value less often than nominal level.

Noninformative Priors for the Difference of Two Quantiles in Exponential Models

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Communications for Statistical Applications and Methods
    • /
    • 제14권2호
    • /
    • pp.431-442
    • /
    • 2007
  • In this paper, we develop the noninformative priors when the parameter of interest is the difference between quantiles of two exponential distributions. We want to develop the first and second order probability matching priors. But we prove that the second order probability matching prior does not exist. It turns out that Jeffreys' prior does not satisfy the first order matching criterion. The Bayesian credible intervals based on the first order probability matching prior meet the frequentist target coverage probabilities much better than the frequentist intervals of Jeffreys' prior. Some simulation and real example will be given.

On the Development of Probability Matching Priors for Non-regular Pareto Distribution

  • Lee, Woo Dong;Kang, Sang Gil;Cho, Jang Sik
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.333-339
    • /
    • 2003
  • In this paper, we develop the probability matching priors for the parameters of non-regular Pareto distribution. We prove the propriety of joint posterior distribution induced by probability matching priors. Through the simulation study, we show that the proposed probability matching Prior matches the coverage probabilities in a frequentist sense. A real data example is given.