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Noninformative Priors for the Power Law Process!
Dal Ho Kim!, Sang Gil Kang? and Woo Dong Lee?

ABSTRACT

This paper considers noninformative priors for the power law process
under failure truncation. Jeffreys’ priors as well as reference priors are found
when one or both parameters are of interest. These priors are compared in
the light of how accurately the coverage probabilities of Bayesian credible
intervals match the corresponding frequentist coverage probabilities. It is
found that the reference priors have a definite edge over Jeffreys’ prior in
this respect.

Keywords: Credible sets, frequentist coverage probabilities, Jeffreys’ prior, power
law process, probability matching priors, reference priors.

1. Introduction

In reliability analysis, a suitable model for the occurrence of failures in a
complex system subject to corrective (instantaneous) actions, as for example in
prototype development, is represented by the so-called power law process, that is
a non-homogeneous Poisson process {X (¢),t > 0} with intensity function A(¢) =
BtP~1/af o > 0,8 > 0 and mean value function u(t) = E(X(t)) = (t/a)P.
The popularity of the power law process is due to its flexibility in representing
various situations like reliability growth (8 < 1), constant reliability (8 = 1) and
reliability decay (8 > 1).

Two sampling schemes are usually considered, namely failure truncation and
time truncation. In failure truncation, a predetermined number n of successive
failure times of the X (t) process is obtained. In time truncation, the observation
of the failures is restricted to a pre-fixed interval [0, #g], and the number of failures,
X (to), along with the failure times during this interval are recorded.
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The classical inferential procedures for the power law process under both
sampling schemes are well-documented in the review article by Rigdon and Basu
(1989). Prediction problem for times of future failures was considered by Lee and
Lee (1978) and Engelhardt and Bain (1978).

From a Bayesian perspective, Kyparisis and Singpurwalla (1985) analyzed
both time and failure truncation data by employing proper priors on « and f3,
and derived prediction distributions of future failure times and the number of
failures in some future time interval. Guida et al. (1989) discussed point and in-
terval estimations for o and 8 assuming failure truncation data and using several
different choices of priors. Bar-Lev et al. (1992) indicated how a Bayesian ap-
proach unifies both failure and time truncation data in estimation and prediction
problems in contrast to the frequentist approach. Recently Lingham and Siva-
ganesan (1997) considered a multiple hypotheses test for 8 based on the intrinsic
Bayes factors under failure truncation.

The above last three papers are concerned with noninformative priors for the
power law process. Bar-Lev et al. (1992) considered two types of priors (a)~!
and (aB)~! for (a,B) following Jeffreys’ rule in the location-scale situation (see
Box and Tiao, 1973, pp. 56-57). They derived the noninformative priors using
the argument based on the location-scale properties of the transformed Weibul.
distribution. The prior (f)~! was also used by Guida et al. (1989). Lingham
and Sivaganesan (1997) derived the reference priors for (a, 8) using the algorithm
of Berger and Bernardo (1989) when ( is the parameter of interest and « is the
nuisance parameter.

The primary objective of this paper is to develop some objective priors on
the power law process under failure truncation. We find Jeffreys’ prior and the
reference priors for this problem. These priors are compared in the light of
how accurately the coverage probabilities of Bayesian credible intervals match
the corresponding frequentist coverage probabilities. The present paper makes
a modest attempt to justify the reference priors under the probability matching
criterion for the power law process.

Jeffreys’ prior is well known to be proportional to the positive square root
of the Fisher information matrix. The reference priors, introduced originally in
Bernardo (1979), and generalized further in Berger and Bernardo (1989, 1992a,
b) are obtained by maximizing a suitable entropy distance. On the other hand,
the matching idea goes back to Welch and Peers (1963) and Peers (1965). Interest
in such priors revived with the work of Stein (1985) and Tibshirani (1989), and
the last few years witnessed a phenomenal growth of research in this general area.



Noninformative Priors for the Power Law Process 19

Among others, we may cite the work of Ghosh and Mukerjee (1993), Mukerjee
and Dey (1993), Datta and Ghosh (1995), Datta and Ghosh (1995, 1996), Datta
(1996), and Mukerjee and Ghosh (1887).

The outline of the remaining sections is as follows. In Section 2, we derive
the expected partial derivatives of log-density up to the third order for the power
law process model under failure truncation. Some results for matching priors
are also given. In Section 3, we derive Jeffreys’ prior as well as the reference
priors. It is shown that Jeffreys’ prior is not a first order matching prior, but
the reference priors are second order probability matching priors when one of the
parameters is of interest. Furthermore, when both parameters are of interest,
the reference prior is the unique joint probability matching prior. In Section 4,
the propriety of posteriors under a class of priors including Jeffreys’ prior and
the reference priors is proven. In Section 5, frequentist coverage probabilities
of the posterior credible sets based on Jeffreys’ prior and the reference priors
are compared when the sample sizes are small. The small sample comparisons
indicate that the reference priors perform better than Jeffreys’ prior in terms of
meeting the target coverage probabilities.

The utility of noninformative priors has always been questioned by subjec-
tivists. Nevertheless, one cannot deny their pragmatic appeal. Indeed, one reason
for the increasing popularity of Bayesian methods in recent years is due to the
fact that even with little or no prior information, noninformative priors can be
used routinely for data analysis. Moreover, these priors are worthwhile for study-
ing the robustness of subjective Bayesian procedures. Thus, not surprisingly,
over the years, various proposals have been put forward for the development of
noninformative priors.

2. Preliminaries

Let Xy, Xa,--- , X, be the first n successive failure times of power law process
with observed values 1 < 3 < --- < z,. Then the joint density is

1

8

flose e ) = (E)C

1

T
)'B_lexp{——(;n)ﬁ}, 0<z < - < Zp < 00,

Q|

=1
(2.1)

where « is the scale parameter and 3 is the shape parameter. In developing the
noninformative priors for (¢, 8), the following expected partial derivatives of the
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log-density will be used.

ot . L .
Lj = Ea,) 5757 108/ (Xles A)], 4,520, i+5=2,3. (2.2)

zaﬁ]

A standard computation provides the following results.

Lemma 2.1.

npB? c1 n+cy 3nB? + nps
In=-—5, In=_, Io2 = e I3o R
2nB+c1(B+1) 2¢c1 + ¢ 2n —c3
I =- = oz =

az ’ Il? - a,B sy 403 — T?

where ¢, = E[Zlog Z), c; = E[Z(log Z)?), and c¢3 = E[Z(log Z)%], and Z is a
gamma random variable with parameters (n,1).

The proof of Lemma 2.1 is straightforward and is omitted.

Since we are interested in developing a second order matching prior for a two-
parameter case, we follow Mukerjee and Dey (1993), where 6; is a parameter of
interest and 6, is a nuisance parameter. Let

tono = 02 0 )

be the Fisher information matrix for (6;,6:) based on one observation. Peers
(1965) showed that = is a first order matching prior for 8; if and only if 7 is the
solution of the partial differential equation
Gy 9Ty, 2.3
602(a02\/—§) 801( ) ( d)
where B = ag9 — a?;/ag2. Mukerjee and Dey (1993) showed that m is a sec-
ond order matching prior for 6, if it satisfies (2.3) and an additional differential

equation
4
Ty(m;61,65) = Y Li(m; 61,6) =0, (2.4)
i=1
where
Li(m;61,02) = {DgB" — 2D} D2(‘111%2 B~ ) + Dz(auao }/2
Ly(m;01,02) = (D17r — 2a11a02 D! D27r + aua02 D27r)/(27rB),
Ly(m;61,0:) = —[D3{(ao2B)™ (K21 — 2an1ag; K12 + af a5, Kos)m}]/(27),
Ly(m;01,02) = —[Di9(m;61,02) — Dy{ariagy (m;61,62)}]/7.
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Here Df = 8’“/691", Kij = E(gl’gz){DziDg log p(X1;61,02)}, and

p -1 2 =2 3 ,—3
682

PY(m;01,09) =
Dim — anag, Din
5 .
Also we are interested. in obtaining the joint probability matching priors for
(61,62). Ghosh and Mukerjee (1993) showed that a first order matching prior =
for 6, satisfies

P, gy [v/n(01 — 81) < 2] = Pr[V/n(61 — ;) < 2|X] + o(n”%), (2.5)

for all z and (6y,62). Here 6; is the posterior mode or the maximum likelihood
estimator of §;. When 7 is a first order matching prior for each component of
(61,65), it is true that such a prior is a first order joint matching prior for (61, 62)

_|_

when 6; and 05 are orthogonal. That is,

Plg, 0,)[V/n(01 — 61) < 21, V1(62 — 62) < 2] (2.6)
= Pw[\/ﬁ(el - él) < 2y, \/T_L(92 - éz) < Z2IX] + O(n_%),

for all (z1,29) and (61,02). When 6; and 8 are not orthogonal, however, Datta
(1996) found that having the common first order matching prior for each com-
ponent is not sufficient to have a first order joint matching prior. Datta (1996)
showed that a first order joint matching prior should satisfy two partial differential
equations and an additional equation involving the Fisher information matrix.

3. Noninformative Priors

The Fisher information matrix of (a, 8) by Lemma 2.1 is given by

\ 2
T Iy Iy \ = % -4
Iy o2 —9 ng )7

and the determinent of I is
. n? + ney — c%

1] 5

o
Hence the Jeffreys’ prior is given by 7s(c, 8) « 1/a.

Following the algorithm of Berger and Bernardo (1989), we obtain the refer-
ence priors when either « or § is the parameter of interest. Not surprisingly, the
reference priors are of the same in this case.
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Theorem 3.1. The reference priors are given by

1
Tr(o, B) = —. (3.1)

af
Proof. We will derive the reference prior when « is of interest only. We choosz2
a sequence of compact sets for (o, 8) by (li,12:) X (k1i, ko), so that ly;,k;; — 0
and l9;, ko; — 00 as ¢ — 00. Let T4 be the indicator of a set A. The conditional

prior of 3 is

. — _IO2I(k1i7k2i)(/8) _ I(kli,kzi)(ﬂ)
m{fle) = w3 —IopdP ~ Bllog(kai) — log (k)]

and the marginal reference prior of « is

(a N 1 (n® + nep — &) /o
ma) o e p{2 ky; Bllog(kai) — log(k1)] o [ (n + c2)/B? Jdﬂ}

2 a2 kai
_ 1 /n’+ng clexp{l/ 2logﬂd,8 1 }
e n + co 2 Jk, B log(ko;) — log(k1;)

1 [n24ncy—c?
_ _&\/?exp{log(kzi) + log (k1) }-

Therefore the reference prior for {a, 8} is

L mi()m(Bla) 1
(e, B) = lim mi(1.0)mi(1.0[1.0) — op’

which is the desired result. O

Notice that the above priors are the same as the priors used by Bar-Lev et al.
(1992). But they obtained their priors using different motivation. Also Lingham
and Sivaganesan (1997) derived the reference prior when £ is the parameter of
interest only. Here the Jeffreys’ prior differs from the reference prior when 3 is
unknown. Furthermore, both forward and backward reference priors, when either
parameter is of interest, are the same.

Probability matching priors when one of the two parameters is of interest are
obtained by the following two theorems. We first consider the case when « is of
interest.

Theorem 3.2. Assume that o is the parameter of interest and 3 is a nuisance
parameter. (i) The class of first order matching priors is given by
1 1 1
Do) = LS

8%

1
loga + —), 3.2
n+ cy & B) (
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where g1 45 a continuously differentiable function. (ii) The reference prior Tr(c, )

is a second order matching prior for c.

Proof. The first order matching prior is the solution of differential equation
(2.3), where (01,62) = (o, B), a2 = ~Iz0, a1 = —I11, agg = —Ipz and B =
(82/a®)(n® + ncy — c2)/(n + c3). Then equation (2.3) simplifies to

Ci 8

n-l—cz'BéE

0
(Bm) + g&(om) = 0. (3.3)
Then it can be shown that the solution of (3.3) is of the form

L ( “ 1o a-l—l)

(e, ) =

where g; is a continuously differentiable function. Thus the result (i) follows.

For (ii), note that the reference prior mg is a first order matching prior ob-
tained by taking g1(-) = 1. I¢ is enough to prove that wp satisfies differential
equation (2.4). Computing L; in (2.4) is not easy. But we have

1 c?
Ly = 1
'S mE T r ek
L, = 1 c1 _ c?

k2 kin+c)B  (n+c)?k
Since Kij = Iij,

C1

Ly=——7——"——.
3 2]61(71‘!'02),8

The function ¥ (rg; e, B) in the formula Ly is

) _ 1 _ €1
b D e (n—c)
2k2(n + cg)2 B2 “aTa 6k?(n + c)3 2 (2n — 3

PRI
kiB®  ki(n +e2)B?

Then
361

Lg=—>02t
47 2ki(n+ c2)B

Therefore, we have Ty = Ly + Ly + Ly + Ly = 0 for any o, 8 > 0. a
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Similarly, we can obtain the case when £ is of interest.

Theorem 3.3. Assume that 8 is the parameter of interest and a is a nuisance
parameter. (i) The class of first order matching priors is given by

1

where g is a continuously differentiable function. (ii) The reference prior nr(a, 8)
is a second order matching prior for B.

(e, B) = (glogw

Proof. In case (1), agn = _I02 = (n + 02)/,32, ayl = —I11 = —-cl/a, agy =
—Iy = npB?/a? and B = (1/8%)(n? + ncy — ¢})/n. Then equation (2.3) simplifies
to

0 c O
— — = 0. 3.5
B5(8m) + 2 o= (am) (3.5)
Using the same argument as in the differential equation (3.3), we obtain the first
order matching prior
1 n 1
= go(—1 -
—502(Zloga+ 3),
where g9 is some continuously differentiable function.
For case (ii), it is enough to verify that the reference prior 7p satisfies equaticn
(2.4). For this,

1 c?
L = —1
! o | lnld?
L2 _ 1 C1 C%

ke kanB ken?B?
Since K;; = Ij;, it can be shown that L3 = 0. The function 9(7g; o, 8) in Ly is

2
Wiri,f) = g O =) + o (e ) — g nB+ea(B+ 1)

3 o)

O+ oa ¥ Tonap

i
+m

where ko = (n? + ncy — ¢?)/n. Then Ly = c1/(kanB). Hence, we have Tp =
Ly+ Lo+ L3+ Ly =0 for any o, 8 > 0. W
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Note that the Jeffreys’ prior is not a first order matching prior for either « or
B from Theorem 3.2 and 3.3.

Now we derive a joint probability matching prior when both parameters are
of interest. Let I=! = (b;;) be the inverse of the Fisher information matrix and
define Q = (pi;), where p;; = b;;/+/biibjj. Datta (1996) proved that if the matrix
Q does not depend on the parameters, then the additional condition for the joint
matching holds.

When both a and f are of interest, the Fisher information matrix is given by
(2.1). Tt can be shown that p1y = pas = 1 and pig = c1/v/nZ + ncy. Therefore,
all entries in the matrix @ are constants and @ is independent of (e, £).

Theorem 3.4. The reference prior is the unique joint probability matching prior.

Proof. It is enough to show that the reference prior is the only solution of two
differential equations (3.3) and (3.5). In fact, these equations are equivalent to
the equations

—é%(om) =0 and %(ﬁw) = 0.

Thus the result follows immediately. 0O

4. Posterior Analysis

In this section, we establish the propriety of the posterior distribution for
(a, B), corresponding to certain priors from a suitable class. For notational con-
venience we consider a general class of noninformative priors which is as follows:

Wb(a7ﬂ) = a >0, ﬂ>07

1
apb’
where b > 0. Note that the Jeffreys’ prior and the reference prior are obtained
by taking b = 0 and 1, respectively. We provide sufficient conditions under which
the posterior is proper.

Theorem 4.1. (i) If n = 1, then the posterior distribution under the prior m,
is improper. (it) If n > 2, then the posterior distribution under the prior m, is
proper.
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Proof. Forb> 0, if n=1, then
o oo oo poo pl-b,.B-
f(zi]|e, B Bz

(o 0]

T
ﬂ—idﬂ = 00.
But when n > 2, we have

/ i / " Fxla, B)m(c, B)dedB
/ / 5:; ﬁ%) exp{ }dadﬂ

=1

[ T (T, 20 5
0

ng
Tn
I'(n)T'(n — b)
= < .
[T, zi(nlogz, — 3.1 | log z;)n~? o0
This completes the proof. |

Marginal inference on f is often of particular interest especially for reliability
growth models. When 8 = 1, the power law process becomes a homogeneous
Poisson process. For 8 > 1, the frequency of failures increases with the time and
thus the system is deteriorating in a reliability sense, while for f < 1 the failure
frequency decreases with time and thus the system is improving. If the posterior
density of 3 is heavily concentrated over (0, 1), this would imply that there is an
improvement over time. The marginal posterior densities of @ and 8 have been
given in Bar-Lev et al. (1992). But we need the marginal posterior cumulative
distribution function (cdf) of & and B for our simulation studies to compare the
frequentist coverage probabilities based on our noninformative priors.

Proposition 4.1. (i) Under the prior my(a, B), the marginal posterior cdf of o

is given by

— (nIOgCL‘n—Z?:1 log‘ri)n_b * n—b—1 : S, —ns :Efz
Fy(ofX) = T(m)T(n —b) . s gx,xn Ir(n, a;)ds, (4.1)

where It (n,y) denotes the complementary incomplete gamma function, fyoo 5"

e *ds. (i) Under the prior my(c, B), the marginal posterior cdf of B is given by

(nlogz, — >0 logz)"™® 1% 11+ - S
Fy(BIX) = = s" iz, “ds. 4.2)

The proof of Proposition 4.1 is straightforward and is omitted.
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5. Small Sample Comparisons: A Simulation Study

Now we compare the reference priors with Jeffreys’ prior for the power law
process. We accomplish this by calculating the frequentist coverage probabilities
of the different Bayesian credible intervals having the same posterior coverage
probabilities. That is to say, the frequentist coverage of a (1 — n)th posterior
quantile should be close to 1 — .

Let o™ (n|X) be the posterior n-quantile of o given X = (X1, -+ ,X,) un-
der the prior . That is, Fp(a™(n|X)|X) = 5. Then the frequentist coverage
probability of one-sided credible interval for « is

Plag)(m ) = P p(a < o™ (n|X)). (5.1)

Similarly, we define 8™ (n7|1X) and P, g)(n; §) as the posterior 7-quantile of # and
the corresponding frequentist coverage probability, respectively. If the marginal
posterior distributions yield quantiles so that P, g)(n; @) (or Fq,8)(n; B)) is close
to 7, even if the sample sizes are small, then we have evidence that the chosen
prior performs well with respect to the probability matching criterion.

The estimated Pqp)(n; @) and Pq ) (n; ) when n = 0.05,0.95, n = 2,5,10
and 8 = 0.5,1,5 are shown in Table 5.1 and 5.2. Using Proposition 4.1, we easily
see that P, 3)(n; @) and P, g)(7; B) do not depend on o under the prior 7. So
it is enough to consider a specific «. We choose « = 1. Numerical values in Table
5.1 and 5.2 were computed in the following way. For fixed (o, 8), 10,000 random
samples (X1,---,X,) are generated from the power law process with parameters
a and B. Then Fy(|X) and F;(8|X) are computed for b = 0,1 and each data
X = (Xy,---,X,) based on Proposition 4.1. Here b = 0,1 corresponds w; and
TR, respectively. Note that under a prior , for fixed X, < a™(n|X) if and only
if F(a”(n|X)|X) < n. Then under a prior 7, P, g)(7; @) can be estimated by the
relative frequency of Fp(n|X) < 7.

For the cases presented in Table 5.1 and 5.2, we see that the estimated frequen-
tist coverage probabilities of the upper 5% and 95% posterior quantiles under the
reference priors wp are much closer to the target coverage probabilities 0.05 and
0.95 than values under Jeffreys’ prior 7y for different small sample sizes. These
comparisons indicate that the reference prior performs better than the Jeffreys’
prior in terms of matching the frequentist coverage probabilities. Clearly the
reference priors should be recommended for a Bayesian analysis in the power law
process whether one or both parameters are of interest.
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TABLE 5.1 Estimated frequentist coverage probabilities of posterior quantiles of o under
Jeffreys’ prior(wy) and the reference prior (wr) for different sample sizes

™y I TR
B | n || P(0.05;c) [ P(0.95;a) P(0.05;a) | P(0.95;c)
0.05 | 2 0.2241 0.9239 - 0.0537 0.9522
0.05 | 5 0.1259 0.9645 - 0.0516 0.9482
0.05 | 10 0.0942 0.9715 0.0518 0.9507
1.0 | 2 0.2183 0.8966 0.0478 0.9573
1.0 | 5 0.1318 0.9687 0.0517 0.9512
1.0 | 10 0.1261 0.9606 0.0503 0.9510
50 | 2 0.2665 0.9994 | 0.0484 0.9777
50 | 5 0.1274 0.9716 0.0504 0.9460
50 | 10 0.0944 0.9697 0.0503 0.9505

TABLE 5.2 Estimated frequentist coverage probabilities of posterior quantiles of B under
Jeffreys’ prior(wy) and the reference prior (wr) for different sample sizes

TJ TR
B | n || P(0.05;8) | P(0.958) | P(0.05;8) | P(0.95;8)
0.05 | 2 0.2955 0.9916 0.0515 0.9464
0.05 | 5 0.1328 0.9821 0.0509 0.9516
0.05 | 10 0.0982 0.9718 0.0506 0.9498
1.0 | 2 0.3019 0.9899 0.0513 0.9536
1.0 | 5 0.1368 0.9802 0.0504 0.9514
1.0 | 10 0.1017 0.9768 0.0504 0.9500
50 | 2 0.2991 0.9909 0.0515 0.9464
50 | 5 0.1338 0.9807 0.0509 0.9516
50 |10 0.1026 0.9726 0.0503 0.9508
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