Browse > Article
http://dx.doi.org/10.5351/CKSS.2007.14.2.431

Noninformative Priors for the Difference of Two Quantiles in Exponential Models  

Kang, Sang-Gil (Department of Computer and Data Information, Sangji University)
Kim, Dal-Ho (Department of Statistics, Kyungpook National University)
Lee, Woo-Dong (Department of Assent Management, Daegu Haany University)
Publication Information
Communications for Statistical Applications and Methods / v.14, no.2, 2007 , pp. 431-442 More about this Journal
Abstract
In this paper, we develop the noninformative priors when the parameter of interest is the difference between quantiles of two exponential distributions. We want to develop the first and second order probability matching priors. But we prove that the second order probability matching prior does not exist. It turns out that Jeffreys' prior does not satisfy the first order matching criterion. The Bayesian credible intervals based on the first order probability matching prior meet the frequentist target coverage probabilities much better than the frequentist intervals of Jeffreys' prior. Some simulation and real example will be given.
Keywords
Difference of two quantiles; exponential models; probability matching prior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207   DOI
2 Epstein, B. and Sobel, M. (1953). Life testing. Journal of the American Statistical Association, 48, 486-502   DOI
3 Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annal of Statistics, 24, 141-159   DOI
4 Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter: higher order asymptotics. Biometrika, 80, 499-505   DOI   ScienceOn
5 Davis, D. J. (1952). An analysis of some failure data. Journal of the American Statistical Association, 47, 113-150   DOI
6 DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of the Royal Statistical Society, Ser. B, 56, 397-408
7 Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. Journal of the Royal Statistical Society, Ser. B, 25, 318-329
8 Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608   DOI   ScienceOn
9 Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37-45   DOI
10 Datta, G. S. and Ghosh, M. (1995b). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363   DOI
11 Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). Bayesian Statistics IV (J. M. Bernardo, et. al. eds.), 195-210, Oxford University Press, Oxford
12 Guo, H. and Krishnamoorthy, K. (2005). Comparison between two quantiles: the normal and exponential cases. Communications in Statistics: Simulation and Computation, 34, 243-252   DOI   ScienceOn
13 Bristol, D. R. (1990). Distribution-free confidence intervals for the difference between quantiles. Statistica Neerlandica, 44, 87-90   DOI
14 Huang, L. F. and Johnson, R. A. (2006). Confidence regions for the ratio of percentiles. Statistics & Probability Letters, 76, 384-392   DOI   ScienceOn
15 Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. John Wiley & Sons, Hoboken, New Jersey
16 Mukerjee, R. and Ghosh, M. (1997). Second-order probability matching priors. Biometrika, 84, 970-975   DOI   ScienceOn
17 Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society, Ser. B, 49, 1-39
18 Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate. Technometrics, 5, 375-383   DOI
19 Stein, C. M. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514   DOI
20 Albers, W. and Lohnberg, P. (1984). An approximate confidence interval for the difference between quantiles in a bio-medical problem. Statistica Neerlandica, 38, 20-22   DOI
21 Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Reinhart and Winston, New York
22 Berger, J. O. and Bernardo, J. M. (1992a). Reference priors in a variance components problem. Bayesian Analysis in Statistics and Econometrics (P. Goel and N. S. Iyengar eds.), 177-194, Springer-Verlag, New York
23 Berger, J. O. and Bernardo, J. M. (1992b). On the development of reference priors (with discussion). Bayesian Statistics IV (J. M. Bernardo, et. at. eds.), 35-60, Oxford University Press, Oxford
24 Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of the Royal Statistical Society, Ser. B, 41, 113-147