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Abstract
The construction of asymptotic confidence intervals is considered for the difference of binomial proportions

in two doubly sampled data subject to false-positive error. The coverage behaviors of several likelihood based
confidence intervals and a Bayesian confidence interval are examined. It is shown that a hierarchical Bayesian
approach gives a confidence interval with good frequentist properties. Confidence interval based on the Rao score
is also shown to have good performance in terms of coverage probability. However, the Wald confidence interval
covers true value less often than nominal level.

Keywords: Profile likelihood, Rao score, hierarchical Bayesian approach, coverage probability,
expected width, double sampling.

1. Introduction

A double sampling scheme on binary observations occurs when the cost of precise test is expensive.
To reduce the cost, most samples are classified by an inexpensive but fallible device, and a small
subsample is classified by a supplementary inerrant device. Numerous literatures are concerned with
the inference on the population proportion in the double sampling scheme; see Tenenbein (1970),
Geng and Asano (1989), York et al. (1995), Moors et al. (2000), Barnett et al. (2001), Raats and
Moors (2003) and Boese et al. (2006). For instance, York et al. (1995) illustrated the advantage
of the double sampling scheme in estimating the proportion of infants born with Down’s syndrome
nationwide. For every birth during a certain period of time, the midwife or obstetrician classified
the child with Down’s syndrome based on a visual inspection, and for a small subsample of births,
expensive but accurate cytogenetic tests were applied for the classification.

The classification by a visual inspection could not be expected to be accurate; the visually in-
spected sample might be exposed to measurement error. It is well known that usual estimators can be
extremely biased when data is subjected to misclassification. It might be dangerous to use the data
alone. On the other hand, the use of only the cytogenetic data would give a large variance because of
the small sample size. It would have clear advantages to use all the data in estimating the accuracy of
the visual test as well as the population proportion.

The sample classified by only the visual inspection might contain two types of error done by
the midwife or obstetrician. He or she might classify erroneously a normal child as Down’s syn-
drome (false-positive) and vice versa (false-negative). Tenenbein (1970) presented the maximum
likelihood(ML) estimator for the population proportion as well as for false-positive and false-negative
error rates.
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Some fallible devices may have only one type of misclassification. For example, Lie et al. (1994)
considered the case that the false-negative counts were corrected using multiple fallible classifiers
and gave the ML estimators. The same model was considered by York et al. (1995). They estimated
the proportion of Down’s syndrome in Norway from the Bayesian perspective. Moors et al. (2000)
analyzed an auditing data with no observed false-negative count. They put the corresponding error
rate equal to zero a priori, and gave one-sided confidence intervals for the population proportion.

For interval estimation problem, Boese et al. (2006) gave five likelihood-based confidence in-
tervals in the false-positive misclassification model. Among them, they recommended the interval
based on the Rao score function. The recommended interval seems to have a good frequentist prop-
erty in that it has the coverage probability close to nominal level. Under the same model, Lee and
Byun (2008) gave a Bayesian confidence interval which outperforms slightly the confidence interval
recommended by Boese et al. (2006).

In this paper, we consider the interval estimation of the difference of binomial proportions in
two data sets obtained by a double sampling scheme subjected to false-positive misclassification. A
naive approach is employing the Wald method. However, many recent works showed that the Wald
method does not provide proper interval in various sampling situations; see for example, Blyth and
Still (1983), Agresti and Coull (1998) and Brown et al. (2001). In particular, Brown et al. (2001)
investigated the unsatisfactory coverage properties of the Wald interval in detail. We will demonstrate
that the Wald method is not adequate as well for the sampling design considered in this paper.

Agresti and Coull (1998) showed that an improved interval for the parameter of a binomial distri-
bution could be obtained by so-called “adding two successes and two failures” to the observed counts
and then using the Wald method. Agresti-Coull’s strategy works well in various sampling designs as
well as in the 1-group design. For instance, Agresti and Caffo (2000) examined the interval estimation
for the difference of two binomial proportions, and concluded that the strategy performs about as well
as the best available methods in this 2-group design. See also Agresti and Min (2005). The more
general problem of interval estimation for a linear function of binomial proportions was considered
by Price and Bonett (2004). Unlike the 1-group and the 2-group cases for which competitive alter-
natives exist, they also concluded that the Agresti-Coull’s method would provide effective confidence
intervals. In addition, Lee (2007) investigated the performance of the Agresti-Coull type confidence
interval in a double sampling design subject to false-positive misclassification and concluded that the
Agresti-Coull type interval is comparable to or even better than likelihood-based confidence intervals.

It might be peculiar why “adding two successes and two failures” would work well in those de-
signs. Agresti and Coull (1998) justified their approach by the Bayesian perspective. Lee and Byun
(2008) showed that this justification is also applicable to the double sampling design. In other words,
the Agresti-Coull type interval is essentially a Bayesian confidence interval. Thus, it is natural to
consider a Bayesian approach for the difference of binomial proportions. Likelihood-based confi-
dence intervals described in Barndorff-Nielsen and Cox (1994) also could be good candidates for the
problem.

2. Two Sample False-Positive Misclassification Model

A double sampling scheme consists of two stages of sampling. A sample of size N is selected at
random from the population of interest and a fallible device classifies each unit in the sample, and
then a subset of size n is selected from the initial sample. Each unit in the subsample is tested by an
inerrant device. Thus, a unit in the subsample is tested by both the inerrant and the fallible device.

For each unit tested by the inerrant device, let Ti = 1, if ith unit is recorded positive (or a success),
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and Ti = 0, if otherwise. Likewise, for each unit tested by the fallible device, define Fi = 1, if ith unit
is classified as positive, and Fi = 0, if otherwise. The proportion of success p can be written as

p = Pr [Ti = 1] ,

and the false-positive error rate is

ϕ = Pr [Fi = 1|Ti = 0] .

The false-negative error rate, Pr [Fi = 0|Ti = 1], is assumed to be zero in this model. Thus, each unit
in the subsample belongs to one of three mutually disjoint categories {(t, f ) | (0, 0), (0, 1), (1, 1)} with
probabilities (1 − p)(1 − ϕ), (1 − p)ϕ and p, respectively. Let nt f be the observed count in (t, f ).
N − n units are tested by only fallible device. Among these units, let x be the number of units tested
positively, and y = N − n − x. Define π = Pr [Fi = 1] = p + (1 − p)ϕ.

Assuming each unit is tested independently, the joint likelihood of p and ϕ is given by

L(p, ϕ;Y) = C(Y)
[
(1 − p)ϕ

]n01 pn11πx(1 − π)n00+y,

where C(Y) = n!/(n00!n01!n11!)
(

N−n
x

)
and Y represents (n00, n01, n11, x, y).

The maximum likelihood estimate of p and ϕ were obtained by Tenenbein (1970) as:

p̂ =
n11

n01 + n11

x + n01 + n11

N
(2.1)

and

ϕ̂ =
n01

n01 + n11

x + n01 + n11

N(1 − p̂)
. (2.2)

See also Barnett et al. (2001). While the estimate of asymptotic variance of p̂ is given as:

V̂ar(p̂) =
p̂ q̂
n
−

(
1
n
− 1

N

)
n11

n11 + n01
p̂(1 − π̂), (2.3)

where q̂ = 1 − p̂ and π̂ = (x + n01 + n11)/N.
A two-sample false-positive misclassified data consists of two data sets Y1 = (n100, n101, n111, x1,

y1) and Y2 = (n200, n201, n211, x2, y2), where each Yi is sampled from L(pi, ϕi;Yi) independently.
Thus, the joint likelihood of p1, p2, ϕ1 and ϕ2 can be written as:

L (p1, p2, ϕ1, ϕ2;Y1,Y2) = L (p1, ϕ1;Y1) L (p2, ϕ2;Y2) . (2.4)

3. Confidence Intervals

3.1. Frequentist confidence intervals
3.1.1. Profile likelihood and information

The profile likelihood for λ and the restricted information are the keys of likelihood-based confidence
intervals. Thus, the calculation of them is essential in what follows.
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Substituting p1 by λ + p2 and taking logarithm of (2.4), we have the full log-likelihood,

ℓ(λ, p2, ϕ1, ϕ2) = (n100 + n101 + y1) log(1 − λ − p2) + n111 log(λ + p2) + (n100 + y1) log(1 − ϕ1)+
n101 log ϕ1 + x1 log π1 + (n200 + n201 + y2) log(1 − p2) + n211 log p2+

(n200 + y2) log(1 − ϕ2) + n201 log ϕ2 + x2 log π2,

where π1 = (1− λ− p2)ϕ1 + (λ+ p2) and π2 = (1− p2)ϕ2 + p2. Profile log-likelihood ℓP(p2, ϕ1, ϕ2; λ)
is the full log-likelihood regarding λ as a given value.

Note that, given λ ∈ (−1, 1), the maximum of the log-profile likelihood is ℓP(p̂λ2, ϕ̂
λ
1, ϕ̂

λ
2; λ) where

p̂λ2, ϕ̂
λ
1 and ϕ̂λ2 are the solutions of following profile likelihood equations:

0 = −n100 + n101 + y1

1 − λ − p2
+

n111

λ + p2
+

(1 − ϕ1)x1

π1
− n200 + n201 + y2

1 − p2
+

n211

p2
+

(1 − ϕ2)x2

π2
(3.1)

0 = −n100 + y1

1 − ϕ1
+

n101

ϕ1
+

(1 − λ − p2)x1

π1
(3.2)

0 = −n200 + y2

1 − ϕ2
+

n201

ϕ2
+

(1 − p2)x2

π2
. (3.3)

Let

ϕ1(p) =
B1(p) +

√
B2

1(p) + 4(N1 − n111)n101(p + λ)(1 − λ − p)

2(N1 − n111)(1 − λ − p)
(3.4)

and

ϕ2(p) =
B2(p) +

√
B2

2(p) + 4(N2 − n211)n201 p(1 − p)

2(N2 − n211)(1 − p)
, (3.5)

where Bi(p) = ni01 + xi − (Ni − ni11 + ni01)(p+λ), i = 1, 2. Then it can be shown that p̂λ2 is the solution
of a nonlinear equation

g(p) = (1 − p)
(
n111 +

n101

ϕ1(p)
− n111

λ + p

)
+ (1 − λ − p)

(
n211 +

n201

ϕ2(p)
− n211

p

)
= 0.

Substituting p in (3.4) and (3.5) by p̂λ2, we have ϕ̂λ1 = ϕ1( p̂λ2) and ϕ̂λ2 = ϕ2(p̂λ2).
When all observed counts are greater than zero, p̂λ2 lies in the interval (max{−λ, 0},min{1 − λ, 1}),

which in turn results in ϕ̂λ1 ∈ (0, 1) and ϕ̂λ2 ∈ (0, 1). Thus, a simple numerical algorithm such as the
bisection method or the Newton-Raphson method can be applicable. However, when some observed
counts are zero, then the full likelihood or the profile likelihood does not admit unique maximum.
For instance, when n211 = 0 or n201 = 0, log( p̂2) or log(ϕ̂2) is undefined. A customary remedy to
prevent the undefined problem is to add a small number, say 1.e-5, to null observed counts; see for
example Boese et al. (2006). Thus we will add a small number when necessary for the calculation of
likelihood-based confidence intervals.

Let p̂λ1 = λ + p̂λ2, π̂
λ
1 = (1 − p̂λ1)ϕ̂λ1 + p̂λ1 and π̂λ2 = (1 − p̂λ2)ϕ̂λ2 + p̂λ2. Then the adjusted observed

information for λ is

Jλλ = Jλλ − (Jλp2 , Jλϕ1 , Jλϕ2 )

Jp2 p2 Jp2ϕ1 Jp2ϕ2

Jp2ϕ1 Jϕ1ϕ1 Jϕ1ϕ2

Jp2ϕ2 Jϕ1ϕ2 Jphi2ϕ2


−1 Jp2λ

Jϕ1λ

Jϕ2λ

 ,
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where

Jλλ = Jλp2 =
n100 + n101 + y1(

1 − p̂λ1
)2 +

n111(
p̂λ1

)2 +

(
1 − ϕ̂λ1

)2x1(
π̂λ1

)2 , Jϕ1ϕ1 =
n100 + y1(
1 − ϕ̂λ1

)2 +
n101(
ϕ̂λ1

)2 +

(
1 − p̂λ1

)2x1(
π̂λ1

)2 ,

Jp2 p2 = Jλλ +
n200 + n201 + y2(

1 − p̂λ2
)2 +

n211(
p̂λ2

)2 +

(
1 − ϕ̂λ2

)2x2(
π̂λ1

)2 , Jϕ2ϕ2 =
n200 + y2(
1 − ϕ̂λ2

)2 +
n201(
ϕ̂λ2

)2 +

(
1 − p̂λ2

)2x2(
π̂λ2

)2 ,

Jλϕ1 = Jp2ϕ1 =
x1(
π̂λ1

)2 , Jp2ϕ2 =
x2(
π̂λ2

)2 , Jλϕ2 = Jϕ1ϕ2 = 0.

The adjusted restricted information is obtained by replacing observed counts by their expectations.
That is,

Iλλ = Iλλ − (Iλp2 , Iλϕ1 , Iλϕ2 )

Ip2 p2 Ip2ϕ1 Ip2ϕ2

Ip2ϕ1 Iϕ1ϕ1 Iϕ1ϕ2

Ip2ϕ2 Iϕ1ϕ2 Iphi2ϕ2


−1 Ip2λ

Iϕ1λ

Iϕ2λ

 ,
where

Iλλ = Iλp2 =

(
1 − ϕ̂λ1

)
N1 − n1ϕ̂

λ
1

1 − p̂λ1
+

n1

p̂λ1
+

(N1 − n1)
(
1 − ϕ̂λ1

)2

π̂λ1
, Iϕ1ϕ1 =

1 − p̂λ1
1 − ϕ̂λ1

 n1

ϕ̂λ1
+

N1 − n1

π̂λ1

 ,
Ip2 p2 = Iλλ +

(
1 − ϕ̂λ2

)
N2 − n2ϕ̂

λ
2

1 − p̂λ2
+

n2

p̂λ2
+

(N2 − n2)
(
1 − ϕ̂λ2

)2

π̂λ1
, Iϕ2ϕ2 =

1 − p̂λ2
ϕ̂λ2

 n2

ϕ̂λ2
+

N2 − n2

π̂λ2

 ,
Iλϕ1 = Ip2ϕ1 =

N1 − n1

π̂λ1
, Ip2ϕ2 =

N2 − n2

π̂λ2
, Iλϕ2 = Iϕ1ϕ2 = 0.

3.1.2. Likelihood-based confidence intervals

The first likelihood-based confidence interval considered in this paper is the Wald interval which can
be constructed by using (2.1) and (2.3) as

λ̂ ± zα/2

√
V̂ar( p̂1) + V̂ar(p̂2), (3.6)

where λ̂ = p̂1 − p̂2 and zα represents the 1 − α quantile of a standard normal distribution. We will
denote (3.6) as CIW.

Efron and Hinkley (1978) claimed that the observed information is preferable form than the
expected information in general. However, under the double sampling model, the restricted observed
information yields nonsensical results in some cases as shown in Boese et al. (2006). Thus we do not
consider the confidence intervals based the restricted observed information.

Using the adjusted restrictive information, an Wald related confidence intervals can be setup as:

Wn =

{
λ :

(
λ − λ̂

)2
Iλλ ≤ z2

α/2

}
.

Next interval is based on the Rao score which is obtained from the partial derivative of ℓ(λ, p2, ϕ1, ϕ2)
with respective to λ. Substituting nuisance parameters by the corresponding solutions of profile like-
lihood equations, we have

s
(
p̂λ2, ϕ̂

λ
1, ϕ̂

λ
2; λ

)
= −n100 + n101 + y1

1 − λ − p̂λ2
+

n111

λ + p̂λ2
+

(
1 − π̂λ1

)
x1

π1
.
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Then, weighting by the adjusted restrictive information, we get an approximate confidence interval,

S n =

{
λ : s

(
p̂λ2, ϕ̂

λ
1, ϕ̂

λ
2; λ

)2 (
Iλλ

)−1 ≤ z2
α/2

}
.

The last likelihood-based confidence interval is due to the well-known log-likelihood ratio statistic,
i.e.

Qn =
{
λ : 2

[
ℓ
(
λ̂, p̂2, ϕ̂1, ϕ̂2

)
− ℓP

(
p̂λ2, ϕ̂

λ
1, ϕ̂

λ
2; λ

)]
≤ z2

α/2

}
.

Wn, S n and Qn do not admit closed-form intervals. Although the wide array method can give
confidence limits, one may have difficulty in calculating the limits. They are computationally too
expensive.

3.2. Confidence interval based on Bayesian approach

Various researchers have previously discussed the Bayesian approach for the double sampling scheme.
Geng and Asano (1989) used Dirichlet priors for the joint probabilities rather than for the natural
model parameters p and ϕ. However, as the conjugate prior for the binomial sample results, the beta
distribution might be appropriate for the marginal prior distributions of p and ϕ. In addition, it is
logical to assume that p and ϕ are independent.

Raats and Moors (2003) used the beta prior distribution. However, the beta distribution leads to
complex posterior distributions. In particular, the marginal posterior distribution of p is a nontrivial
linear combination of beta distributions, and it requires a heavy computation to calculate density.
Even, we can only obtain the mean of the posterior distribution numerically. Thus, their approach is
not appropriate for the interval estimation problem.

Recently Lee and Byun (2008) gave a confidence interval for population proportion in a doubly
sampled data. Applying a hierarchical Bayesian approach, a relatively simple and effective confidence
interval was derived. This result can be applicable to the problem considered in this paper.

They applied priors hierarchically as

g(pi|πi) =
pαi−1

i (πi − pi)βi−1

B(αi, βi)π
αi+βi−1
i

, 0 < pi < πi

and

g(πi) =
1

B(γi, δi)
π
γi−1
i (1 − πi)δi−1, 0 < πi < 1,

where B(m, n) =
∫ 1

0 xm−1(1 − x)n−1dx. Then, the posterior mean and variance of pi for i = 1, 2 are

p̂B
i = π̂

B
i

ni11 + αi

ni11 + ni01 + αi + βi

and

Var
(
p̂B

i

)
=

(ni11 + αi)(ni01 + βi)
(ni11 + ni01 + αi + βi)2

(
π̂B

i
)2
+ π̂B

i
(
1 − π̂B

i
)
/
(
Ñi + 1

)
ni11 + ni01 + αi + βi + 1

+

(
ni11 + αi

ni11 + ni01 + αi + βi

)2 π̂B
i
(
1 − π̂B

i
)(

Ñi + 1
) ,
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Table 1: Case-control data of Hildesheim et al. (absorbing false-negatives into true-positives)
Fallible device

Control group Case group
Inerrant device 0 1 0 1

Subsample
0 33 11 13 3
1 na 32 na 23

701 535 318 375

respectively, where Ñi = Ni + γi + δi and π̂B
i = (xi + ni01 + ni11 + γi)/Ñi. Thus, a Bayesian confidence

interval due to Lee and Byun (2008) can be established as:

p̂B
1 − p̂B

2 ± zα/2
√

Var
(
p̂B

1

)
+ Var

(
p̂B

2

)
. (3.7)

To utilize (3.7), we must specify the parameters of prior distributions. Usually the parameters
reflect the prior knowledge about pi’s and πi. However, noninformative priors were adequate for
interval estimation problem, and it is logical that the prior parameters of the first group are the same
as those of the second group. We had considered three choices of noninformative priors, uniform prior
(αi = βi = γi = δi = 1), Jeffrey’s prior (αi = βi = γi = δi = 1/2) and αi = γi = z2

α/2/4, βi = z2
α/2/8 and

δ = 3z2
α/2/4. The last one is closely related to “adding two successes and two failures”. See Lee and

Byun (2008) for further detail.
It turned out that the last set of priors outperforms the others in terms of the coverage probability

and the expected width. Thus, we only consider the last one in what follows and denoted it by CIB.

3.3. An example

The case-control study of Hildesheim et al. (1991) aimed to examine that invasive cervical cancer can
affect exposure to Herpes Simplex Virus(HSV). To explore the relationship, western blot procedure
was applied to 693 women in the case group and for 1236 women in the control group to detect the
infection of HIV. Since the western blot procedure is fallible, a sub-sample from each group was
further investigated by refined western blot procedure, which is known to be a relatively accurate
procedure. Originally the fallible procedure is exposed to the two types of error, but we assume the
false-negative error rate is zero. The false-negative cases are absorbed into the true-positive. This
artificial data is shown in Table 1.

Using the values in Table 1, we find the Bayesian and the maximum likelihood estimates of p
are −0.151 and −0.157, respectively with standard errors 0.0484 and 0.0539. Figure 1 shows the
values of likelihood-based statistics against λ. The limits of 95% confidence intervals are the points
crossing with z2

0.025 = 3.8416, which are (−0.238,−0.058), (−0.247,−0.052) and (−0.254, 0.034) for
each S n,Qn and Wn, respectively. Thus, depending upon the statistic, one can have different decisions
for the null value of hypothesis at 5% significance level. Note that Wn has the widest width in this
case. 95% Bayesian and Wald confidence limits are (−0.245,−0.056) and (−0.262,−0.051).

4. Comparison of Confidence Intervals and Conclusions

As we noted before, the likelihood-based confidence intervals are computationally expensive. For
instance, when N1 = N2 = 100 and n1 = n2 = 20, it requires 18,711 × 18,711 = 350,101,521
iterations to calculate actual coverage probability for each parameter point (p1, p2). In particular,
the wide array method for calculating confidence limits requires a huge computation work. Thus,
it is practically impossible to compare actual coverage probability or expected width. We abandon
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Figure 1: Values of likelihood-based statistics against λ for the data in Table 1. The crossing points with 3.8416
are 95% confidence limits.

to compare actual values. The comparison is done through simulations. That is, we estimated the
coverage probability and the expected width of 95% confidence intervals at every 81 grid points of
(p1, p2) where pi = 0.1 up to 0.9 with 10,000 random samples, and then calculated the averages of
these 81 estimated coverage probabilities and expected widths. We also computed the averages of
mean absolute deviation of coverage probabilities from nominal level(AMADN). The AMADN is
multiplied by 10,000. The results are shown in Table 2. The random samples were generated by the
well-known IMSL Fortran Library.

Some messages of Table 2 are quite clear. For instance, CIW,Qn and Wn do not approximate
the nominal level well enough. The AMADN’s of these confidence intervals are always larger than
those of S n and CIB. In particular, CIW has significantly smaller averages of coverage probabilities
than the nominal level. As a result, it has the largest AMADN’s for almost always. It seems that
the Wald procedure should be used with a great care for the interval estimation of the difference of
binomial proportions in two doubly sampled data as well. Qn and Wn also are not interesting. These
two intervals are dominated by S n and CIB in the approximation. Since the averages of coverage of
these two are always lower than nominal level, we may conclude that they tend to be narrower than
necessary under the configurations consider in Table 2.

However, the preference between S n and CIB is not clear. S n gives better approximation than CIB
in most cases, but CIB also dominates S n in some cases. Although it seems that S n would be better
than CIB in the approximation, it is hard to conclude that S n is better than CIB. Note that the coverage
of S n fluctuate around the nominal level, but those of CIB are slightly larger than the nominal level. In
other words, CIB is conservative. If we notes that CIB has almost always smaller averages of expected
widths than S n, one may choose CIB for the interval estimation problem.

Another important factor for judging confidence intervals may be the simplicity emphasized by
Agresti and Coull (1998), Brown et al. (2001) and many other researchers. It is possible to argue that
the computation is not a problem for modern computational techniques; however, we believe that the
simplicity is important as it is a matter of practice and not of computation. From this point of view,
we prefer CIB to S n in that CIB is much simpler with competitive powers.
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Table 2: Averages of 81 estimated coverage probabilities and expected widths, MADN
Group 1 Group 2 Average coverage probability and expected width, AMADN×10, 000

N1 n1 ϕ1 N2 n2 ϕ2 CIW Qn Wn S n CIB

100 20

0.1

100
20 0.1 .923 .306 268 .936 .309 160 .947 .326 165 .958 .339 112 .958 .312 108

0.2 .922 .330 282 .934 .331 172 .944 .343 150 .954 .354 94 .953 .330 105

30 0.1 .928 .294 221 .936 .293 144 .944 .303 132 .952 .311 77 .955 .297 95
0.2 .929 .309 210 .937 .308 139 .944 .316 123 .951 .324 73 .953 .310 86

200
40 0.1 .926 .267 242 .938 .267 134 .947 .278 125 .954 .287 83 .955 .271 84

0.2 .929 .282 216 .939 .281 125 .946 .291 121 .953 .299 74 .952 .284 80

60 0.1 .925 .258 255 .940 .257 129 .948 .268 119 .954 .275 74 .954 .262 72
0.2 .926 .268 236 .940 .266 128 .948 .277 124 .954 .284 79 .952 .271 63

300
60 0.1 .923 .251 273 .940 .251 137 .949 .262 126 .954 .270 85 .954 .255 66

0.2 .925 .262 246 .940 .261 130 .948 .272 128 .954 .279 83 .951 .265 66

90 0.1 .921 .244 293 .941 .244 138 .949 .255 132 .955 .262 87 .953 .249 66
0.2 .923 .251 267 .941 .250 129 .950 .262 129 .955 .268 84 .952 .255 58

0.2

100
20 0.1 .922 .330 281 .934 .331 170 .944 .343 151 .954 .354 97 .953 .330 108

0.2 .922 .353 283 .932 .352 186 .942 .360 146 .951 .370 88 .950 .347 100

30 0.1 .924 .319 259 .935 .316 158 .943 .321 122 .949 .329 71 .951 .316 101
0.2 .926 .334 245 .934 .330 161 .941 .335 123 .948 .342 72 .949 .328 89

200
40 0.1 .920 .294 298 .935 .291 156 .945 .298 111 .951 .304 70 .952 .291 89

0.2 .923 .308 274 .935 .304 156 .943 .310 115 .949 .317 69 .949 .303 79

60 0.1 .918 .286 323 .936 .282 153 .946 .288 107 .951 .294 73 .950 .283 90
0.2 .920 .295 300 .936 .290 150 .946 .296 106 .951 .302 66 .950 .291 77

300
60 0.1 .914 .279 355 .936 .275 164 .946 .282 112 .951 .288 71 .951 .277 87

0.2 .919 .289 314 .936 .285 157 .945 .292 112 .951 .298 69 .949 .286 74

90 0.1 .912 .273 377 .936 .269 164 .947 .275 107 .952 .281 72 .950 .271 84
0.2 .915 .280 352 .937 .275 157 .947 .281 103 .951 .287 66 .949 .276 72

200 40

0.1

200
40 0.1 .918 .244 318 .939 .249 140 .949 .265 140 .955 .274 98 .959 .252 131

0.2 .912 .277 385 .934 .277 183 .944 .286 123 .951 .293 75 .951 .277 143

60 0.1 .937 .222 126 .935 .217 152 .937 .220 144 .942 .225 102 .953 .224 73
0.2 .937 .240 134 .936 .234 138 .939 .236 126 .942 .240 90 .951 .239 63

300
60 0.1 .930 .222 199 .932 .221 182 .942 .230 140 .949 .237 88 .956 .226 98

0.2 .930 .248 204 .934 .244 165 .941 .249 119 .946 .255 79 .950 .247 101

90 0.1 .939 .203 113 .936 .197 143 .939 .200 126 .943 .204 92 .953 .204 61
0.2 .939 .217 110 .937 .210 132 .939 .212 119 .942 .216 86 .950 .216 54

0.2

200
40 0.1 .922 .260 286 .938 .264 137 .948 .279 134 .954 .288 92 .957 .266 102

0.2 .917 .292 333 .934 .291 168 .945 .299 117 .951 .307 70 .950 .290 113

60 0.1 .937 .240 128 .937 .234 135 .939 .236 122 .942 .240 89 .951 .239 66
0.2 .937 .256 134 .937 .250 130 .939 .251 119 .942 .255 87 .949 .253 56

300
60 0.1 .932 .240 183 .934 .237 162 .941 .245 131 .948 .251 86 .954 .241 79

0.2 .931 .264 188 .935 .260 152 .940 .264 118 .945 .269 74 .949 .261 80

90 0.1 .937 .222 130 .937 .215 127 .940 .217 106 .944 .220 81 .951 .221 61
0.2 .938 .234 119 .938 .227 118 .940 .229 101 .943 .232 75 .949 .232 51
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