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Noninformative Priors for the Difference of Two
Quantiles in Exponential Models

Sang Gil Kang? Dal Ho Kim? and Woo Dong Lee®

Abstract

In this paper, we develop the noninformative priors when the parameter
of interest is the difference between quantiles of two exponential distribu-
tions. We want to develop the first and second order probability matching
priors. But we prove that the second order probability matching prior does
not exist. It turns out that Jeffreys’ prior does not satisfy the first order
matching criterion. The Bayesian credible intervals based on the first order
probability matching prior meet the frequentist target coverage probabilities
much better than the frequentist intervals of Jeffreys’ prior. Some simulation
and real example will be given.

Keywords: Difference of two quantiles; exponential models; probability matching prior.

1. Imtroduction

The exponential distribution plays an important role in the field of reliability.
The usefulness of the exponential distribution in reliability applications can be
found in the early work of Davis (1952), Epstein and Sobel (1953) and others.
Further justification, in the form of theoretical arguments to support the use of
the exponential distribution as the failure law of complex equipment, is presented
in the book by Barlow and Proschan (1975) and Lawless (2003).

Comparison between two populations is an important problem in statistics
and is commonly used in real fields. The populations are usually compared with

1) Associate Professor, Department of Computer and Data Information, Sangji University,
Wonju 220-702, Korea.
Correspondence : sangkg@sangji.ac.kr

2) Professor, Department of Statistics, Kyungpook National University, Taegu 702-701, Korea.
E-mail : dalkim@knu.ac.kr

3) Professor, Department of Asset Management, Daegu Haany University, Kyungsan 712-715,
Korea.
E-mail : wdlee@dhu.ac.kr



432 Sang Gil Kang, Dal Ho Kim and Woo Dong Lee

respect to their means to establish superiority of one population over the other
or to check if the two populations are equivalent. For example, two drugs may be
compared with respect to their mean effects to determine the better one. Even
though, comparing two populations with respect to means is a common problem,
there are situations where one needs to compare the quantiles instead of their
means (see, Albers and Lohnberg, 1984; Huang and Johnson, 2006).

The present paper focuses on developing noninformative priors for the differ-
ence of two quantiles of exponential distributions. We consider Bayesian priors
such that the resulting credible intervals for the difference of two quantiles have
coverage probabilities equivalent to their frequentist counterparts. Although this
matching can be justified only asymptotically, our simulation results indicate that
this is indeed achieved for small or moderate sample sizes as well.

This matching idea goes back to Welch and Peers (1963). Interest in such
priors revived with the work of Stein (1985) and Tibshirani (1989). Among
others, we may cite the work of Mukerjee and Dey (1993), DiCiccio and Stern
(1994), Datta and Ghosh (1995a, 1995b, 1996), Mukerjee and Ghosh (1997).

On the other hand, Ghosh and Mukerjee (1992), and Berger and Bernardo
(1989, 1992a, 1992b) extended Bernardo’s (1979) reference prior approach, giving
a general algorithm to derive a reference prior by splitting the parameters into
several groups according to their order of inferential importance. This approach is
very successful in various practical problems. Quite often reference priors satisfy
the matching criterion described earlier.

For comparison of two quantiles, Albers and Lohnberg (1984) presented a
biomedical problem where comparison between the p** quantiles of two popu-
lations arises. They provided an approximate distribution-free confidence inter-
val for the difference of two quantiles. Bristol (1990) suggested a modification
to Albers and Lohnberg’s method. Guo and Krishnamoorthy (2005) proposed
methods for interval estimation and testing the difference between the quan-
tiles of two normal populations and two exponential populations. Their methods
are based on the concepts of generalized p-value and generalized limit. On the
other hand, Huang and Johnson (2006) derived confidence regions for the ratio
of quantiles from two normal populations. They developed an exact confidence
procedure when the ratio of variances is known. And when the ratio of variances
is unknown, they obtained confidence intervals for the ratio of quantiles based on
large sample methods. However there is a little work in this problem from the
viewpoint of Bayesian framework.

The outline of the remaining sections is as follows. In section 2, we consider



Noninformative Priors for the Difference of Two Quantiles 433

first order and second order probability matching priors for the difference of two
quantiles in exponential models. We revealed that the second order matching
prior does not exist. It turns out that Jeffreys’ prior does not satisfy the first order
matching criterion. We provide that the propriety of the posterior distribution
for the first order matching prior and Jeffreys’ prior in section 3. In section 4,
simulated frequentist coverage probabilities under the proposed priors and a real
example are given.

2. The Noninformative Priors

For a prior 7, let 8}~%(m; X) denote the (1 — )™ percentile of the posterior
distribution of #;, that is,

Pty <0 *(mX)X]=1-aq, (2.1)
where 8 = (04, .. .,0t)T and 6, is the parameter of interest. We want to find
priors 7 for which

Pl < 017%(m;X)|0] =1 — o+ o(n™¥) (2.2)

for some u > 0, as n goes to infinity. Priors 7 satisfying (2.2) are called matching
priors. If u = 1/2, then 7 is referred to as a first order matching prior, while if
u = 1, 7 is referred to as a second order matching prior.

Consider that Xi,...,X,, are independent and identically distributed ran-
dom variables according to the exponential distribution with mean y; and Y7, ...,
Y., are independent and identically distributed random variables according to the
exponential distribution with mean ps. Then the likelihood function of u; and

p2 given X = (z1,...,Zp;) and y = (y1,...,Yn,) is

1 n 1 n2 71 Ti n2 y
L{py, puolx,y) = | — — ] exp[-) Z2-) 2}, 2.3
(11, 2|, y) <u1) (M2> p( ;m ¢:1“2) (2.3)
where 3 > 0 and ps > 0.

In order to find matching priors =, let

Comyli2 + c1nopy
H1p2

61 = cipy — cop2 and Oy =

where ¢; = —log(1 — p;),% = 1,2 and ¢;; is the pi* quantile of the exponential
distribution with mean pu;,7 = 1,2. With this parameterization, the likelihood
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function of (1, 82) given (x,y) is given by

L(61,02]%,y) o< 6532 (crca(na + ng) + 6102 + g(61,62)"/%) ™™
x(clcz('nl + nz) — 010, + 9(01, 02)1/2)—-712

% ex _ i 26192.731;
P c1c2(n1 + ng) + 0102 + g(61,62)/2

i=1
no .

-3 e S e
= cicp(m1 + na) — 6102 + g(61,62)1/2

where g(61,02) = [c1c2(ng—n1)+6102)2+4c3c2n ng. Based on the above likelihood
function (2.4), the Fisher information matrix is given by

I O
I=

I = 27117129%
1 9(91, 92)1/2[0162(7’&1 + n2)2 + (n2 — n1)9102 -+ (n1 + nz)g(91, 02)1/2]

where

and

[clcg(nl + n2)2 + (’ng - TL1)9192 + (’I’Ll -+ ’I’L2)g(01, 92)1/2]
2039(61,02)1/2 '

From the above Fisher information matrix I, 8; is orthogonal to 85 in the sense

of Cox and Reid (1987). Following Tibshirani (1989), the class of the first order

probability matching prior is characterized by

Iy =

029(01,02)/4d(6,)
[clcz(nl + n2)2 + (’I’Lz — n1)0192 + (’I’Ll + nz)g(91, 92)1/2]1/2,

w1 (6,,65) o (2.5)
where d(62) > 0 is an arbitrary function differentiable in its arguments.

The class of first order probability matching prior given in (2.5) is so broad,
so one can narrow down this prior to the second order probability matching prior
as given in Mukerjee and Ghosh (1997).

The second order probability matching prior is of the form (2.5), and also
the function d(-) must satisfy an additional differential equation (cf (2.10) of
Mukerjee and Ghosh (1997)), namely,

L 9 -3 9 -3 22
gd(02)6_01]11 L1’1,1 + 6—02.[11 LyioI d(92) =0, (2.6)
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where
dlogL\*
L =
1,110 =F ( 86, >}
_ 8n1n20§h1 (01, 02)
g(01,02)3/2[c1c2(n1 + n2)? + (ng — n1)0182 + (n1 + na)g(61, 62)1/2)3
I - E [83logL] _ _2610271171292
M2 06200, |~ g(61,05)32
Here

h1(61,62) = c?cg(nQ —ny)(ny + nz) + 3c1c2(n1 + n2)2(n% —ning + n%)9102
+3cica(nd — n3)02602 + (n2 + n2)0303 + (22 (n2 — nd)(ny + ng)?
+cica(ng + nl)(2n1 —ning + 2n2)9162 + (n2 — nl)GfO%]g(Hl, 02)1/2.

Then (2.6) simplifies to

1 0 )
6d(92)6—91{w1 (91; 92)} -+ 5—9;{’&12(91, 92)d(92)} — 0’ (27)
where
2%/2(n1ng) " /h1 (61, 82)
wr(fr, b2)= 3/4 2 1/213/2
9(61,82)%/ erca(ny + na)? +(ng = nn)fafla-+ (1 + )9 (01, 62) 77
and
3/2 1/2 2
wa(b1,62) = — 2%/%(n1na)*/ “c1c005

9(01,02)3/4crca(n1 + n2)? + (ng — n1)0162 + (ny + np)gl/2]1/2

However there can be no solution to (2.7) unless the function d is the function of
01 and 6. Thus the second order probability matching prior does not exist.
From the Fisher information matrix I, Jeffreys’ prior is given by
1
[(Clcg(nz — n1) + 9192) + 461627117’),2]1/2'

77 (61,02) (2.8)

Remark 2.1 In the original parameterization (u, u2), the first order prob-
ability matching prior is given by

_ C2n C n 1/2
w0 (1, o) oc 3 pg (Z—zl + L 2) d(62(p1, p2))-
1 5

And Jeffreys’ prior is given by

my(p1, p2) o py Mg (2.9)
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Notice that the matching prior (2.5) includes many different matching priors
because of the arbitrary selection of the function d. However all functions are not
permissible in the construction of priors. For instance, we consider any function
of the form 6,%. If a is negative integer, then the posterior distribution under
function of the form 6;* is proper. But the condition of propriety in this form
strongly depend on a . Moreover the posterior under this form is complex. Also
there does not seem to be any improvement in the coverage probabilities with
this posterior distribution. So we have chosen d to be a constant function. The
resulting prior is given by

029(61,02) 4

7 (61,62) o
[6102(711 + n2)2 + (’I’Lg — n1)0192 + (n1 + ng)g(el, 02)

(2.10)

kA

(ML

Thus in the original parameterization (u1, p2), the first order matching prior is
given by

(1) -1, -1 C%nl c%ng 12
T’ (11, H2) OC iy g =t (2.11)
i 5

3. Implementation of the Bayesian Procedure

We investigate the propriety of posteriors for general priors which include
Jeffreys’ prior (2.9) and the first order probability matching prior (2.11). We
consider the class of priors

2 2.\ €

—u —p[Cin1  cing

mg(pua, p2) oc puy 5" (2_2 + ig‘“) ) (3.1)
H1 M3

where ¢ > 0, b > 0 and ¢ > 0. The following theorem can be proved.

Theorem 3.1 The posterior distribution of (p1, u2) under the prior (3.1) is
proper ifni+a—1>0andny+b—1>0.

Proof: Under the prior (3.1), the joint posterior for u; and u2 given x and
y is

1 \™Mtey 1\t cn; Ang\° Mg Ay
(1, p2|X,y) o <—> (—) (2—2 + —IT) exp —Z 2N 2
M1 M2 K1 Ky i M1 o M2
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For 1 <pu; <ooand 1 < pup < o0,

0o oo oo o) 1 ni+a 1 na+b .
/ / (1, palX, y)dpmdus < / / (——) <—> (cBn1 + cina)
1 1 1 1 231 H2

1 ng
T4 Yi
X exp —E ——E == 1 duidps < oo,
( #2) Hiap

im M1
ifni+a—-1>0andns+b6—1>0. ForO< p; <1land 1< pus < oo,

o rl o rl /1 n1+a+2c 1 na+b ) ) N
/ / m(p1, p2|x, y)dprdpe < / / <—> (—) (c3m1 + cina)
1 0 1 0 \M1 U2

n no
T Yi
xexp | — —_— = ) dpi1dus < oo,
ifni+a+2c—1>0andns+b—1>0. ForO< p; <land 0< up <1,

1 rl 1 rl 1 n1+a+2c 1 na+b+2c .
/ / m(p1, po|X, y)dpidug < / / (—) (—) (cBny + cing)
0 Jo 0 Jo \M1 U2
ny T ng .
X exp (—Z = Z &) dpidus < oo,

Pl S &
ifny +a+2c~1>0and ny +b+2¢c—1>0. This completes the proof. O

Theorem 3.2 The marginal posterior density of 6 under the matching prior
(2.11) is given by

Tm (01]%, ¥)
00
X / 931+n2+1[0162(n1 + nz) + 8169 + g%]_"l [6102(n1 + TLQ) — 0105 + g%]_m
0

SIS

_1 1
xg i[cica(ny + n2)2 + (ng — n1)0102 + (n1 + n2)g2]

- 2c100; 2 2¢904y;
X exp (_Z 1V2.44 - 202Y; l>d02,
i—1 Clcg(nl + TLQ) + 0162 + [/ — 0162(774 + n2) — 0102 + g2

where g = g(61,02) = (cica(ng — ny) + 6162)% + 4c2c2nyny. And the marginal
posterior density of 1 under Jeffreys’ prior (2.9) is given by

7TJ(01|X7 Y)

o0
= / 03" ™ erea(ny + ) + 6162 + g7 M erca(ny + ng) — 0165 + g3 g3
0

ny n2
2019237‘ 202922/'
X exp <—E : T — : T+ |dfs.
o1 cice(ny +n2) + 6102 + g2 T cice(ng + n2) — 6102 + g2
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Actually the normalizing constant for the marginal density of 8; requires two
dimensional integration. Therefore we have the marginal posterior density of 8y,
and so it is to compute the marginal moment of ;.

4. Numerical Studies and Discussion

We evaluate the frequentist coverage probability by investigating the credible
interval of the marginal posteriors density of #; under the noninformative prior 7
given in section 3 for several configurations (p1,p2), (p1, u2) and (ny,n2). That is
to say, the frequentist coverage of a (1 — o) posterior quantile should be close to
(1—¢). This is done numerically. Table 1 gives numerical values of the frequentist
coverage probabilities of 0.05 (0.95) posterior quantiles for the our priors. The
computation of these numerical values is based on the following algorithm for
any fixed true (u1, u2) and any prespecified probability a. Here « is 0.05 (0.95).
Let 07 (a|X,Y) be the posterior a-quantile of 6; given X and Y. That is to say,
F(07(a|X,Y)|X,Y) = a, where F(-|X,Y) is the marginal posterior distribution
of 6;. Then the frequentist coverage probability of this one sided credible interval
of 01 is

Pl ) (05 01) = Py, 1) (0 < 01 < 07 (X, Y)).

The estimated P, ,,)(c;61) when o = 0.05(0.95) is shown in Table 4.1. In
particular, for fixed , we take 10,000 independent random samples of X and Y
from the model (2.3). For the cases presented in Table 4.1, we see that the first
order matching prior meets very well the target coverage probabilities for small
and moderate values of n; and no. Also the results of tables are not much sensitive
to the change of the values of (11, u2) and (p1,p2). Thus we can recommend to
use the first order matching prior when using the matching criterion. Note that
Jeffreys’ prior does not satisfy the first order matching criterion but it meets the
target coverage probabilities well.

Example 4.1 The following data, given by Proschan (1963), are time inter-
vals of successive failures of the air conditioning equipment in Boeing 720 aircraft.

Aircraft 1 | 102 209 14 57 54 32 67 59 134 152 27 14 230 66 61 34
Aircraft 2 | 50 44 102 72 22 39 3 15 197 188 79 88 46 5 5 36 22 139 210
97 30 23 13 14

For aircraft 1, the Kolmogorov-Smirnov test statistic is 0.1143 and its p-value
is 0.88. For aircraft 2, the Kolmogorov-Smirnov test statistic is 0.1791 and its
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Table 4.1: Frequentist Coverage Probabilities of 0.05 (0.95) Posterior Quantiles
for 91

¥4 P2 125} H2 | M1 N2 mJ Tm
01 09[01 01]5 5 [0061 (0.954) 0.059 (0.952)
5 100043 (0.955) 0.040 (0.950)

10 10| 0.044 (0.952) 0.044 (0.951)

10 150052 (0.954) 0.051 (0.952)

01 1.0 5 5 10053 (0.947) 0.052 (0.946)
)

)

)

5 10| 0.051 (0.953) 0.051 (0.952
10 10| 0049 (0.951) 0.049 (0.951
10 15 [ 0.050 (0.953) 0.049 (0.952
01 10| 5 5 |0050 (0.952) 0.050 (0.952)
5 1010050 (0.952) 0.050 (0.952)
10 10| 0.051 (0.946) 0.051 (0.946)
10 15| 0.049 (0.950) 0.049 (0.950)
10 015 5 [0056 (0.963) 0.067 (0.946)
5 100061 (0.964) 0.065 (0.945)
10 10 | 0.055 (0.957) 0.057 (0.946)
10 15| 0.056 (0.957) 0.057 (0.946)
1.0 10| 5 5 | 0055 (0.949) 0053 (0.946)
5 100050 (0.957) 0.048 (0.953)
10 10 [ 0.051 (0.956) 0.050 (0.953)
10 15| 0051 (0.952) 0.050 (0.950)
1.0 10 |5 5 |0050 (0.950) 0.049 (0.949)
5 100048 (0.949) 0.048 (0.949)
10 10| 0.051 (0.950) 0.051 (0.950
10 15| 0051 (0.953) 0.051 (0.953
10 015 5 |0042 (0.942) 0.053 (0.940
5 10 | 0047 (0.951) 0.053 (0.950
10 10| 0.043 (0.950) 0.050 (0.951
10 15 | 0.045 (0.946)
10 1.0/ 5 5 |0057 (0.961)
5 100056 (0.963)
10 10| 0.056 (0.958) 0.059 (0.948
10 150054 (0.960) 0.056 (0.947
10 10| 5 5 |0049 (0.952) 0.048 (0.950
5 10 | 0.057 (0.954) 0.055 (0.950
10 10| 0.050 (0.950) 0.049 (0.947
10 15| 0.053 (0.951) 0.051 (0.948

)
)
)
)
)
0.049 (0.948)
0.066 (0.942)
0.060 (0.944)
)
)
)
)
)
)

p-value is 0.62. So we can assume that the time between successive failures for
each plane is exponentially distributed.
Under Jeffreys’ prior and the matching prior, Table 4.3 shows the Bayes esti-



440 Sang Gil Kang, Dal Ho Kim and Woo Dong Lee

Table 4.2: (Continued)

P1 D2 1251 M2 | 1 T2 T Tm
09 01]01 015 5 [0046 (0.942) 0.049 (0.944)
5 10 | 0.048 (0.942) 0.050 (0.944)
10 10 {0.049 (0.959) 0.051 (0.960)
10 15| 0.048 (0.959) 0.050 (0.959)
01 1.0{ 5 5 {0039 (0.944) 0.057 (0.934)
5 10| 0.043 (0.948) 0.053 (0.942)
10 10 | 0.047 (0.947) 0.058 (0.944)
10 151{0.045 (0.951) 0.053 (0.950)
01 10| 5 5 | 0.057 (0.960) 0.058 (0.948)
5 10 |0.055 (0.964) 0.053 (0.951)
10 10| 0.055 (0.962) 0.054 (0.954)

10 15| 0.053 (0.956) 0.050 (0.948)
10 01| 5 5 0050 (0.950) 0.050 (0.950)
5 10| 0.052 (0.953) 0.053 (0.953)
10 100052 (0.950) 0.052 (0.950)
10 150051 (0.951) 0.051 (0.951)
10 1.0| 5 5 | 0046 (0.947) 0.050 (0.949)
5 10 | 0.047 (0.954) 0.048 (0.955)
10 10 | 0.048 (0.945) 0.050 (0.946)
10 15| 0.048 (0.950) 0.049 (0.951)
10 10| 5 50037 (0.942) 0.056 (0.934)
5 10 |0.042 ( (0.941)
10 10 | 0.043 (0.945) 0.055 (0.941)
10 15| 0.045 (0.947) 0.053 (0.945)
10 01|5 5 /0050 (0.950) 0.050 (0.950)
5 10 |0.049 (0.950) 0.049 (0.950)
10 10 { 0.053 (0.952) 0.053 (0.952)

! 10 15| 0.051 (0.950
10 10| 5 5 |0.049 (0.950
5 10} 0.050 (0.951

0.051 (0.950)
0.049  (0.950)
0.050 (0.951)

)
)
)
)
)
)
)
)
)
)
)
)
)
0.948) 0.052
)
)
)
)
)
)
)
)
)
)
)
)
)
)

10 10 | 0.047 (0.949) 0.047 (0.949)
10 15| 0.050 (0.950) 0.050 (0.950)
10 10| 5 5 |0.046 (0.950) 0.050 (0.951)
5 10 |0.047 (0.948) 0.049 (0.949)
10 10 | 0.050 (0.949) 0.052 (0.951)
10 15| 0.046 (0.948) 0.048 (0.949)

mates and the 95% Bayesian credible intervals of 0 = — log(1 — p1)p1 + log(1 —
p2) e with several values of p; and ps.

From Table 4.3, the credible intervals under two priors have similar values
and the length of the credible interval under the matching prior is shorter than
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Table 4.3: Bayes Estimates and ‘95% Bayesian Credible Intervals of 6;

P11 D2 mJ Tm

0.9 01| 19573 (115.82,325.57) | 196.01 (116.12,325.85)
07 03| 8216  (38.80,150.59) | 82.89  (39.71,151.19)
05 05| 14.66  (-18.93,56.86) | 14.93  (-18.27,56.76)
0.3 0.7 -49.15 (-91.34,-15.82) | -50.11  (-91.99,-17.40)
0.1 0.9 |-144.79 (-221.29,-93.11) | -145.34 (-221.81,-93.70)

Jeftreys’ prior.

5. Conclusion

In the exponential distributions, we have found the first order matching prior
and Jeffreys’ prior for the difference of two quantiles. We have proved that the
second order matching prior does not exist. And these first order matching priors
possess good frequentist properties in the sense that the coverage probabilities
of credible intervals for the difference of two quantiles based on this prior match
their frequentist counterparts very closely even for small and moderate sample
sizes. Also Jeffreys’ prior does not satisfy the first order matching criterion. From
our simulation results and example, we recommend to use the first order matching
prior for the Bayesian inference of the difference of two quantiles.
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