• Title/Summary/Keyword: Free Radical

Search Result 3,071, Processing Time 0.031 seconds

Effect of Cyclohexanone Treatment on the Activities of Oxygen Free Radical Metabolizing Enzyme in the Liver Damaged Rats (급성 간손상 실험동물에 Cyclohexanone투여가 Oxygen Free Radical 대사효소 활성에 미치는 영향)

  • 김현희;조현성;윤종국
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.81-88
    • /
    • 2002
  • Effect of cyclohexanone treatment on the activities oxygen free radical and cyclohexanone metabolizing enzyme in acute liver damaged rats, was investigated. Acute liver damage was induced in rats with pretreatment of 50% $CCl_4$ in olive oil(0.1ml/100g body wt) intraperitoneally 3 times every other day. Cyclohexanone(1.56g/kg body wt, i.p.) was administered to the animals 24 hours after the last Pretreatment of CC1$_4$. Rats were sacrificed at 4 hours after injection of cyclohexanone. On the basis of liver weight/body weight(%), serum levels alanine aminotransferase activity and hepatic protein content, cyclohexanone treatment to acute liver damaged animals led to the more enhanced liver damage. On the other hand, injection of cyclohexanone to the rats led to the increased activities of hepatic cytochrome P-450 dependent aniline hydroxylase and xanthine oxidase. Furthermore, by treatment of cyclohexanone to the acute liver damaged rats hepatic xanthine oxidase activity was more increased than the $CCl_4$ treated rats. In case of oxygen free radical scavenging system, the hepatic glutathione content and the activities of hepatic glutathione S-transferase, catalase, superoxide dismutase were generally increased by injection of cyclohexanone to rats, and the hepatic glutathione content, catalase and alcohol dehydrogenase activities were more decreased in liver damaged rats by the treatment of cyclohexanone. In conclusion, the cyclohexanone treatment to acute liver damaged rats led to enhancement of liver damage that may be due to oxygen free radical together with cyclohexanone.

Evaluation of the Antioxidant Potential and ldentification of Active Principles of Solanum nigrum L. on Antioxidant Defense Systems (까마중내 (Solanum nigrum L.) 항산화방어계의 항산화력 및 물질의 동정)

  • 임종국;정규영;정형진
    • Journal of Life Science
    • /
    • v.11 no.6
    • /
    • pp.509-516
    • /
    • 2001
  • Enzymes and non-enzymatic antioxidants are involved in defense of oxgen free radical intermediates in all aerobic cells. The non -enzymatic antioxidants and antioxidant enzyme from the extracts of Solanum nigrum L. known to be anticancer medicinal plant were examined in other to utilize the discovery in natural products as cancer chem-opereventive agents. The DPPH(1,1-diphenyl-2-picryl-hydrazyl) free radical scavening activity on plant position of Solanum nigrum L. was the highest in root, with stem, whole plant, seed, leaf and flower, at higher activities respectively. In extraction methods, the DPPH free radical scavenging activity by circulating extraction with 80 % MeOH. The DPPH activity of L6 fraction by LH-20 column chromatography showed about 6.7 times higher than that of ethyl acetate-fraction. These were identified as phenolic compounds such as 2-6-methano-3-benzazocin-11-ol, 2[1H]-phyidinethione and 2-hydroxy -5-methyl-benzaldehyde. Peroxidase(POD) and superoxide dismutase(SOD) activities of stem and root were higher than that of other plant positions and those of plant positions according to growing stage were the highest in 60 days after seeding. The numbers of isozyme pattern of POD and SOD showed 10 hands and 5 bands, respectively, especially, 8 bands of POD and 3 bands of SOC showed a difference according to plant positions.

  • PDF

Screening for DPPH Free Radical Scavenging Activities of Autogenous Seaweeds in Jeju Island Using a Electron Spin Resonance (ESR) Spectroscopy (Electron Spin Resonance을 이용한 제주 자생 해조류의 DPPH Free Radical 소거활성 검색)

  • Cha, Seon-Heui;Heo, Soo-Jin;Jeon, You-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • Extracts which were prepared by four different extractions - 80% methanol extracts (ME) at high ($70^{\circ}C$) and a room temperature ($20^{\circ}C$), respectively and aqueous extracts (AE) at both temperatures with the residue after the methanol extracts - of 10 green, 19 brown and 25 red seaweeds collected in Jeju Island coast were examined for their DPPH free radical scavenging activity using a ESR (electron spin resonance) spectroscopy. A variety of the extracts showed positive scavenging effect against DPPH free radical (except the green seaweeds). Among the extracts, the brown seaweed extracts exhibited the highest scavenging activity. Especially, Sargassum spp. of the brown seaweeds have remarkable scavenging activities - both methanolic and aqueous at the both temperatures ($20^{\circ}C$ and $70^{\circ}C$). On the other hand, ME showed better scavenging activity than AE in the red seaweed extracts. These results indicate that autogenous seaweeds in Jeju will be potential natural antioxidants for functional food compounds.

  • PDF

Application and High Throughput Screening of DPPH Free Radical Scavenging Activity by Using 96-Well Plate (96-well plate를 이용한 DPPH free radical 소거활성 측정과 그 응용)

  • Choi, Jung-Sup;Oh, Jung-Im;Hwang, In-Taek;Kim, Sung-Eun;Chun, Jae-Chul;Lee, Byung-Hoi;Kim, Jin-Seok;Kim, Tae-Joon;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.2
    • /
    • pp.92-99
    • /
    • 2003
  • A 96-well plate was applied to determine the DPPH free radical scavenging activity using 107 plant-specific enzyme inhibitors and 100 unknown plant-originated extracts. The final optimum volume was $250{\mu}L$ containing $100{\mu}M$ DPPH ethanolic solution at pH 7.8. In this condition, the radical scavenging activities were significantly increased by two known antioxidants consisting of ascorbate and a-tocopherol in a concentration-dependent manner. Among the 107 inhibitors, ampicillin and gallic acid showed 90.2% and 92.6% antioxidant activity at $100{\mu}M$, respectively, and these results were consisted with previous findings. In the tested 100 natural materials at $50{\mu}g/mL$, antioxidant activity of AT-407 resulted in the highest of 90.1%, and 10 extracts including AT-388 and AT-443 showed over 70%. Our results suggest that the use of 96-well plate for determining DPPH free radical scavenging activity would be a suitable method to select antioxidant-like substances of both synthetic compounds and natural products.

Effect of Campsis grandiflora on Antioxidative Activity in UVB-irradiated Human Dermal Fibroblasts (사람 섬유아세포에서 UVB 조사에 대한 능소화 추출물의 항산화 효과)

  • Kim, Jin-Hwa;Lee, Bum-Chun;Zhang, Yong-He;Pyo, Hyeong-Bae
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.174-179
    • /
    • 2005
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmen tal facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Campsis grandiflora extract on the UVB-irradiated human dermal fibroblasts (HDFs). We tested free radical and superoxide scavenging effect in vitro. C. grandiflora extracts had potent radical scavenging effect by 82% at $100{\mu}g/ml$, respectively. For testing intracellular ROS scavenging activity the cultured HDFs were analyzed by increase in DCF fluorescence upon exposure to UVB 20 $MJ/cm^2$ after treatment of C.grandiflora extracts. The results showed that oxidation of CM-DCFDA was inhibited by C.grandiflora extracts effectively and C.grandiflora extracts has a potent free radical scavenging activity in UVB- irradiated HDFs. In ROS imaging using confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our results suggest that C.grandiflora can be effectively used for the prevention of UV-induced adverse skin reactions such as radical production, and skin cell damage.

Preparation and Properties of Polyolefin Graft Polymer available as a Primer for Polyurethane Adhesive (I) Synthesis of polyolefins with cyclic acid anhydride by free radical graft polymerization

  • Ryu, Ki Jung;Kim, Min Jung;Min, Seong Kee;Lee, Won Kee;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • Because of their low surface free energy and absence of polar groups at the surface, polyolefins are substrates whose wetting and adhesion are very difficult. Free radical grafting of monomers to backbone polymer is one of the most attractive ways for the chemical modification of polymers. Synthesis of graft copolymer through graft polymerizations of PE and/or PP with phthalic anhydride (PhAn) was made and FTIR spectra of the graft polymer were the examined. And also the effects of phthalic anhydride content on the grafting ratio, thermal properties and contact angle of the graft polymer were examined.

Cytotoxicity of Environmental Estrogenic Compound, Bisphenol A, via Generation of Free Radicals (내분비계 장애물질인 Bisphenol A의 free radical 생성을 통한 독성발현)

  • 안광현;김봉희
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 2003
  • Bisphenol A shares similarities in structure, metabolism and action with DES, a known human teratogen and carcinogen. Bisphenol A, a monomer of polycarbonate and epoxy resins, has been detected in canned food and human saliva. The purpose of the this study was to evaluate the cytotoxicity, cell proliferation of bisphenol A In the presence of a rat liver S9 mix, contaning cytochrome P450 enzymes, and Cu (II). In the present study, Bisphenol A in combination with Cu (II) exhibited a enhancement in cytotoxicity which were inhibited by free radical scavengers. The content of malondialdehyde, an end product of lipid peroxidation, was also found to increase with concentration of bisphenol A. Also, we examined the change of CuZn-SOD, Mn-SOD, catalase and GPx activities in the MCF-7 cells exposed to bisphenol A. The activities of CuZn-SOD, CPx, catalase were found to decrease with bisphenol A concentration. Meanwhile, the activity of Mn-SOD was unchanged. This indicated that elevated oxidative stress caused by imbalance between the production and removal of free radicals occurred in cells.

Free Radical Scavenging Activity of the Seed of Phaseolus calcaratus Roxburgh

  • Fang, Minghao;Cho, Hyoung-Kwon;Ahn, Yun-Pyo;Ro, Sang-Jeong;Jeon, Young-Mi;Whang, Wan Kyuun;Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.169-174
    • /
    • 2010
  • The seed of Phaseolus calcaratus Roxburgh (PHCR) is traditionally used for anti-pyretic and antiinflammatory effects. Although these effects are believed to be related to its antioxidant potential, little information is available for the mechanisms by which PHCR seed might scavenge free radicals or otherwise act as an antioxidant. In the present study, we purified some fractions from the ethanol extract of PHCR seed and evaluated each fraction's ability to scavenge free radicals generated by cell-free systems. We also identified active compound that is putatively responsible for free radical scavenging by analyzing NMR spectra. PHCR samples exhibited a concentration-dependent radical scavenging activity against hydroxyl radicals, superoxide anions, and DPPH radicals. Of the samples tested, a methanol-eluted sub-fraction from the PHCR extract, named $FF_4$, scavenged these radicals more effectively than the other fractions. We identified catechin-7-O-$\beta$-Dglucopyranoside as the active compound responsible for free radical scavenging potential of $FF_4$.

Depigmentation activity of plant extracts (Okyong-san)

  • Han, Sung-Chul;Lee, Young-Jin;Lee, Ki-Young;Kim, Yeon-Zu;Jin, Sang-Hyeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.794-798
    • /
    • 2003
  • The reactive oxygen species (or free radicals) generated by ultraviolet radiation cause damage on cellular components and pigment of skin. The aim of this study was to investigate the skin-whitenig effect of Okyong-san. Inhibitory effects of okyong-san extracts on melanin synthesis were studied. Namely, UV-absorbing ability, free radical scavenging activity and tyrosinase inhibitory activity of okyong-san extracts were investigated. As a result, the extracts of okyong-san were found to inhibit the activity of tyrosinase and they showed an absorbance in the UV-B region and UV-C region. We also observed that extracts of okyong-san had free radical scavenging activity.

  • PDF

Free Radical Toxicology and Cancer Chemoprevention

  • Lin, Jen-Kun
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.83-88
    • /
    • 2001
  • Most reactive oxygen species (ROS) are free radicals and implicated in the development of a number of disease processes including artherosclerosis, neurodegenerative disorders, aging and cancer. ROS are byproducts of a number of in vivo metabolic processes and are formed deliberately as part of nor-mal inflammatory response. On the other hand, ROS are generated either as by products of oxygen reduction during xenobiotic metabolism or are liberated as the result of the futile redox cycling of the chemical agents including several chemical carcinogens. A better understanding of the mechanisms of free radical toxicity may yield valuable clue to risks associated with chemical exposures that leading to the development of chronic diseases including cancer. The molecular biology of ROS-mediated alterations in gene expression, signal transduction and carcinognesis is one of the important subjects in free radical toxicology. Epidemiological studies suggest that high intake of vegetables and fruits are associated with the low incidence of human cancer. Many phytopolyphenols such as tea polyphenols, curcumin, resveratrol, apigenin, genistein and other flavonoids have been shown to be cancer chemopreventive agents. Most of these compounds are strong antioxidant and ROS scavengers in vitro and effective inducers of antioxidant enzymes such as superoxide dismutatse, catalase and glutathione peroxidase in vivo. Several cellular transducers namely receptor tyrosine kinase, protein kinase C, MAPK, PI3K, c-jun, c-fos, c-myc, NFkB, IkB kinase, iNOS, COX-2, Bcl-2, Bax, etc have been shown to be actively modulated by phyto-polyphenols. Recent development in free radical toxicology have provided strong basis for understanding the action mechanisms of cancer chemoprevention.

  • PDF