• Title/Summary/Keyword: Fredholm operator

Search Result 41, Processing Time 0.02 seconds

SOME PROPERTIES OF INVARIANT SUBSPACES IN BANACH SPACES OF ANALYTIC FUNCTIONS

  • Hedayatian, K.;Robati, B. Khani
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.523-533
    • /
    • 2007
  • Let $\cal{B}$ be a reflexive Banach space of functions analytic on the open unit disc and M be an invariant subspace of the multiplication operator by the independent variable, $M_z$. Suppose that $\varphi\;\in\;\cal{H}^{\infty}$ and $M_{\varphi}$ : M ${\rightarrow}$ M, defined by $M_{\varphi}f={\varphi}f$, is the operator of multiplication by ${\varphi}$. We would like to investigate the spectrum and the essential spectrum of $M_{\varphi}$ and we are looking for the necessary and sufficient conditions for $M_{\varphi}$ to be a Fredholm operator. Also we give a sufficient condition for a sequence $\{w_n\}$ to be an interpolating sequence for $\cal{B}$. At last the commutant of $M_{\varphi}$ under certain conditions on M and ${\varphi}$ is determined.

A NOTE ON WEIGHTED COMPOSITION OPERATORS ON MEASURABLE FUNCTION SPACES

  • Jbbarzadeh, M.R.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.95-105
    • /
    • 2004
  • In this paper we will consider the weighted composition operators W = $uC_{\tau}$ between $L^{p}$$(X,\sum,\mu$) spaces and Orlicz spaces $L^{\phi}$$(X,\sum,\mu$) generated by measurable and non-singular transformations $\tau$ from X into itself and measurable functions u on X. We characterize the functions u and transformations $\tau$ that induce weighted composition operators between $L^{p}$ -spaces by using some properties of conditional expectation operator, pair (u,${\gamma}$) and the measure space $(X,\sum,\mu$). Also, some other properties of these types of operators will be investigated.

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

The essential point spectrum of a regular operator

  • Lee, Woo-Young;Lee, Hong-Youl;Han, Young-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.295-300
    • /
    • 1992
  • In [5] it was shown that if T .mem. L(X) is regular on a Banach space X, with finite dimensional intersection T$^{-1}$ (0).cap.T(X) and if S .mem. L(X) is invertible, commute with T and has sufficiently small norm then T - S in upper semi-Fredholm, and hence essentially one-one, in the sense that the null space of T - S is finite dimensional ([4] Theorem 2; [5] Theorem 2). In this note we extend this result to incomplete normed space.

  • PDF

kth-ORDER ESSENTIALLY SLANT WEIGHTED TOEPLITZ OPERATORS

  • Gupta, Anuradha;Singh, Shivam Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1229-1243
    • /
    • 2019
  • The notion of $k^{th}$-order essentially slant weighted Toeplitz operator on the weighted Lebesgue space $L^2({\beta})$ is introduced and its algebraic properties are investigated. In addition, the compression of $k^{th}$-order essentially slant weighted Toeplitz operators on the weighted Hardy space $H^2({\beta})$ is also studied.

CONTINUITY OF APPROXIMATE POINT SPECTRUM ON THE ALGEBRA B(X)

  • Sanchez-Perales, Salvador;Cruz-Barriguete, Victor A.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.487-500
    • /
    • 2013
  • In this paper we provide a brief introduction to the continuity of approximate point spectrum on the algebra B(X), using basic properties of Fredholm operators and the SVEP condition. Also, we give an example showing that in general it not holds that if the spectrum is continuous an operator T, then for each ${\lambda}{\in}{\sigma}_{s-F}(T){\setminus}\overline{{\rho}^{\pm}_{s-F}(T)}$ and ${\in}$ > 0, the ball $B({\lambda},{\in})$ contains a component of ${\sigma}_{s-F}(T)$, contrary to what has been announced in [J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity II, Integral Equations Operator Theory 4 (1981), 459-503] page 462.

SOLUTIONS TO M-POINT BOUNDARY VALUE PROBLEMS OF THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS AT RESONANCE

  • XUE CHUNYAN;DU ZENGJI;GE WEIGAO
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.229-244
    • /
    • 2005
  • In this paper, we study the third order ordinary differential equation : $$x'(t)=f(t,x(t),x'(t),x'(t)),t{\in}(0,1)$$ subject to the boundary value conditions: $$x'(0)=x'(\xi),x'(1)=^{m-3}{\Sigma}_{i=1}{{\beta}x'({\eta}i),x'(1)=0}$$. Here ${\beta}_{i}{\in}R,\;^{m-3}{\Sigma}_{i=1}\;{\beta}_{i}\;=\;1,\;0<{\eta}_1<{\eta}_2<{\cdots}<{\eta}_{m-3}<1,\;0<\xi<1$. This is the case dimKer L = 2. When the ${\beta}_i$ have different signs, we prove some existence results for the m-point boundary value problem at resonance by use of the coincidence degree theory of Mawhin [12, 13]. Since all the existence results obtained in previous papers are for the case dimKerL = 1, our work is new.

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

WEYL TYPE-THEOREMS FOR DIRECT SUMS

  • Berkani, Mohammed;Zariouh, Hassan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1027-1040
    • /
    • 2012
  • The aim of this paper is to study the Weyl type-theorems for the orthogonal direct sum $S{\oplus}T$, where S and T are bounded linear operators acting on a Banach space X. Among other results, we prove that if both T and S possesses property ($gb$) and if ${\Pi}(T){\subset}{\sigma}_a(S)$, ${\PI}(S){\subset}{\sigma}_a(T)$, then $S{\oplus}T$ possesses property ($gb$) if and only if ${\sigma}_{SBF^-_+}(S{\oplus}T)={\sigma}_{SBF^-_+}(S){\cup}{\sigma}_{SBF^-_+}(T)$. Moreover, we prove that if T and S both satisfies generalized Browder's theorem, then $S{\oplus}T$ satis es generalized Browder's theorem if and only if ${\sigma}_{BW}(S{\oplus}T)={\sigma}_{BW}(S){\cup}{\sigma}_{BW}(T)$.

APPROXIMATE CONTROLLABILITY FOR SEMILINEAR INTEGRO-DIFFERENTIAL CONTROL EQUATIONS WITH QUASI-HOMOGENEOUS PROPERTIES

  • Kim, Daewook;Jeong, Jin-Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.189-207
    • /
    • 2021
  • In this paper, we consider the approximate controllability for a class of semilinear integro-differential functional control equations in which nonlinear terms of given equations satisfy quasi-homogeneous properties. The main method used is to make use of the surjective theorems that is similar to Fredholm alternative in the nonlinear case under restrictive assumptions. The sufficient conditions for the approximate controllability is obtain which is different from previous results on the system operator, controller and nonlinear terms. Finally, a simple example to which our main result can be applied is given.