• Title/Summary/Keyword: Fourier Transform(STFT)

Search Result 120, Processing Time 0.03 seconds

Analysis of Impulse Dispersion for IR-UWB Antenna Using Time-Frequency Analysis (시간-주파수 분석을 이용한 IR-UWB 안테나 임펄스 분산 특성 분석)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1371-1379
    • /
    • 2010
  • This paper presents an analysis of impulse dispersion for impulse radio ultra-wide band(IR-UWB) antenna. A set of antenna structure configurations are highlighted with verification based on the STFT(Short Time Fourier Transform) in 3.1~5.1 GHz: first, a taper-slotted antenna allowing the optimal impulse transmission, and second, 4 types of the omni-directional IR-UWB antenna using different feed structures(microstrip line, and CPW(Coplanar Waveguide)). The proposed STFT allows the analysis of the IR-UWB antenna's dispersion characteristic.

Bistatic ISAR Imaging with UWB Radar Employing Motion Compensation for Time-Frequency Transform (시간-주파수 변환에 요동보상을 적용한 UWB 레이다 바이스테틱 ISAR 이미징)

  • Jang, Moon-Kwang;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.656-665
    • /
    • 2015
  • In this paper, we improved the clarity and quality of the radar imaging by applying motion compensation for time-frequency transform in B-ISAR imaging. The proposed motion compensation algorithm using UWB radar is verified. B-ISAR algorithm procedure and time-frequency transform for improved motion compensation are provided for theoretical ground. The image was created by a UWB Radar B-ISAR imaging algorithm method. Also, creating a B-ISAR imaging algorithm for motion compensation of time-frequency transformation method was used. The B-ISAR Imaging algorithm is implemented using STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), and WVD(Wigner-Ville Distribution) approaches. The performance of STFT is compared with the GWT and WVD algorithms. It is found that the WVD image shows more clarity and decreased spread phenomenon than other methods.

Design and Implementation of Multi-mode Sensor Signal Processor on FPGA Device (다중모드 센서 신호 처리 프로세서의 FPGA 기반 설계 및 구현)

  • Soongyu Kang;Yunho Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.246-251
    • /
    • 2023
  • Internet of Things (IoT) systems process signals from various sensors using signal processing algorithms suitable for the signal characteristics. To analyze complex signals, these systems usually use signal processing algorithms in the frequency domain, such as fast Fourier transform (FFT), filtering, and short-time Fourier transform (STFT). In this study, we propose a multi-mode sensor signal processor (SSP) accelerator with an FFT-based hardware design. The FFT processor in the proposed SSP is designed with a radix-2 single-path delay feedback (R2SDF) pipeline architecture for high-speed operation. Moreover, based on this FFT processor, the proposed SSP can perform filtering and STFT operation. The proposed SSP is implemented on a field-programmable gate array (FPGA). By sharing the FFT processor for each algorithm, the required hardware resources are significantly reduced. The proposed SSP is implemented and verified on Xilinxh's Zynq Ultrascale+ MPSoC ZCU104 with 53,591 look-up tables (LUTs), 71,451 flip-flops (FFs), and 44 digital signal processors (DSPs). The FFT, filtering, and STFT algorithm implementations on the proposed SSP achieve 185x average acceleration.

Structural Health Monitoring by using the Time-Reversal and STFT (탄성파의 시간-역전현상과 STFT 를 이용한 구조물 손상진단)

  • Go, Han-Suk;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2066-2072
    • /
    • 2008
  • The time reversal was investigated for direct root between PZT and PZT, but in case of a circular PZT, lamb wave moves not only along the direct root but also another roots. The center frequency of lamb wave is kept when the lamb waves are reflected from damage. This paper presents experimental and theoretical results for the new structural health monitoring method by above features of lamb wave, and we can increase accuracy of the new structural health monitoring method by using STFT(Short Time Fourier Transform).

  • PDF

A Study on the Removal of Impulse Noiseusing Wavelet Transform Pair and Adaptive-Length Median filter (웨이브렛 변환쌍과 적응-길이 메디안 필터를 이용한 임펄스 노이즈 제거에 관한 연구)

  • 배상범;김남호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1575-1581
    • /
    • 2003
  • As a society has progressed rapidly toward a highly advanced digital information age, a multimedia communication service for acquisition, transmission and storage of image data as well as voice has being commercialized externally and internally. However, in the process of digitalization or transmission of data, noise is generated by several causes, and researches for eliminating those noises have been continued until now. There were the existing FFT(fast fourier transform) and STFT(short time fourier transform) for removing noise but it's impossible to know information about time and time-frequency localization capabilities has conflictive relationship. Therefore, for overcoming these limits, wavelet transform which is presented as a new technique of signal processing field is being applied in many fields recently. Because it has time-frequency localization capabilities it's Possible for multiresolution analysis as well as easy to analyze various signal. And when two wavelet base were designed to form Hilbert transform pair, wavelet pair provide superior performance than the existing DWT(discrete wavelet transform) in data characteristic detection. Therefore in this parer, we removed impulse noise by using adaptive-length median filter and two dyadic wavelet base which is designed by truncated coefficient vector.

Quickest Spectrum Sensing Approaches for Wideband Cognitive Radio Based On STFT and CS

  • Zhao, Qi;Qiu, Wei;Zhang, Boxue;Wang, Bingqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1199-1212
    • /
    • 2019
  • This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing with short-time Fourier transform and compressed sensing, shortening the time of perception and improving the speed of spectrum access or exit. Moreover, method B can take advantage of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable for wideband spectrum sensing. Simulation results show that method A significantly outperforms the single serial CUSUM detection for small SNRs, while method B is substantially better than the block detection based spectrum sensing in small probability of the false alarm.

Efficient Spectrum Sensing Method using the Short Time Fourier Transform algorithm (Short Time Fourier Transform 알고리즘을 적용한 효율적인 스펙트럼 센싱 기법)

  • Kang, Min-Kyu;Lee, Hyun-So;Hwang, Sung-Ho;Kim, Kyung-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.375-378
    • /
    • 2009
  • The Spectrum Sensing Technology is the core technology of the Cognitive Radio (CR) System that is one of the future wireless communication technologies. This is the technology that temporarily allocates the frequency bandwidth by scanning surrounding wireless environments to keep licensed terminals and search the unused frequency bandwidth. In this paper, we proposed the efficient Spectrum Sensing Method using the Short Time Fourier Transform (STFT). The Cosine and DVB-H signal with the 6MHz bandwidth is used as the Input Signal. And we confirm the Spectrum Sensing result using Modified Periodogram Method, Welch's Method for compared with Short Time Fourier Transform Algorithm.

  • PDF

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Adaptive Wavelet Analysis of Non-Stationary Vibration Signal in Rotor Dynamics

  • Ji Guoyi;Park Dong-Keun;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.26-30
    • /
    • 2005
  • A rotor run-up or run-down process provide more useful information for modal analysis than normal operation conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used to analyze non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can give a good result in this complex dynamic analysis of the touching process.

Analysis Technique for the Vibration Signal of Revolution Machine Using the STFT (STFT를 이용한 회전체의 진동신호 분석 기법)

  • Park, Jong-Yeun;Park, Jun-Yong;Choi, Won-Ho
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.67-73
    • /
    • 2004
  • The purpose of this study is to analyze the vibration signal of the revolution machine using the STFT(Short Time Fourier Transform). It is common to analyze the frequency of signal through FFT algorithm with the fixed sampling rate. However, in this situation the order spectrum information useful rather than the general frequency information with the fixed sampling rate. In this paper, the resampling technique was used for getting the information of order spectrum. In resampling process, the arithmetic amount and MSE(Mean Square Error) for various kinds of the signal interpolation was compared and presented the propriety of the interpolation method while developing analysis equipment. Order tracking was implemented using signal interpolation method which it has selected. Then the analyzed results were obtained through simulation using the STFT technique.

  • PDF