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A rotor run-up or run-down process provide more useful information for modal analysis than normal operation
conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of
vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-
stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although
simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used tolanalyze
non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From
the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper
also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can
give a good result in this complex dynamic analysis of the touching process.

NOMENCLATURE

a = the dilation (scale) in wavelet transform
b = the translation in wavelet transform
[, = sampling frequency

1. Introduction

Modal testing is widely used for the dynamic test of rotor-bearing
system in many industries. However, conventional modal
identification procedures are limited to the force excitation under non-
operational conditions’.  Under operational conditions, the real
loading status and environment change quite often. Therefore, the
modal parameters under the working condition are different from
ones obtained under non-operational conditions’. In rotor dynamics
the dynamic behavior of the operating rotor—bearing system may
differ significantly from the parameters obtained from a non-
operational test because of the change of stiffness and damping of oil-
film in bearings. Therefore, it is necessary to extract modal
parameters from operational vibration signals. Rotor run-up or run-
down process provides more information than stable working
conditions because of the change of rotating speeds. The unbalance
force excites the rotor-bearing systems as a swept sine exciting in run-
up or run-down process. During these processes the rotor system may
pass through the resonance frequency.

However, difficulty associated with a rotor-bearing system’s
run-up or run-down is the non-stationary nature of vibration signal.
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The power of classical Fourier analysis is affected by the various
rotating speeds in a window length. Short-Time Fourier Transform
(STFT) using shorter time window offers a better method for the
study of time-varying signals. However, when the spectral
components of the signal are changing rapidly it is difficult to find
an appropriate short time window in which the signal is more or
less stationary and thus allows to obtain an amplitude-frequency
curve. We can extract the modal frequencies and damping ratios
from the amplitude frequency curve. .

Wavelets has been widely used in signal analysis*®. The wavelet
transform represents a signal as a sum of wavelets at different
locations and scales, which has advantages to deal with non-
stationary data. Most of the applications use its power to locate time-
frequency distribution. In an entire run-up or run-down process, the.
rotating speed changes in a wide range, which requires the wavelet
analysis with a large number of scales. However, because we try to
use wavelet to locate amplitude-frequency distribution to extract
modal frequencies and damping ratios, only a short time duration and
a small range of scales related to rotating frequency needs to be
considered around a specific time. Therefore, an Adaptive Wavelet
Transform (AWT) is proposed for this task. A simple rotor-bearing
system has been built to investigate the dynamic behaviour and the
process of a shaft touching outer hoop.

2. Theory

2.1 Short-Time Fourier Transform

Fourier transform represents a signal as a superposition of
sinusoids with different frequencies. The Fourier coefficients
measure the contribution of the sinusoids at these frequencies. The
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basic idea of STFT is to divide the signal into small segments and
to apply Fourier transform to analyze each segment to get the
frequency components that exist in that segment6. To investigate
the spectrum of signal x(¢) at time ¢, the signal is multiplied by a
window function A(f) centered at ¢:

x,(0)=x(0)h(r—1) 1)
In STFT
x(7) for 7 near ¢
x,(7) = § ©
0 for 7 far away from ¢

The STFT of signal X, (7) is

X (@) =% [Terx (nydr 3)

Because the short duration signals have inherently large
bandwidths the frequency resolution is low. To obtain a higher
resolution in practical calculation some zeros are added after each
segment data. Since the windowed signal emphasizes the signal
around time ¢ the STFT reflects the distrubution of frequency around
the time. However, a signal shortened window, in general, cannot give
good time and frequency localization. If the signal in one segment is
non-stationary the STFT can only give an approximate result.

2.2 Adaptive Wavelet Transform

The continuous wavelet transform of signal x(t) is defined as®
YN t=b
(W,x)(a,b)=a f (P (D yar @
°° a

where \y(t__é) is the scaled wavelet, \p(t _b) is the complex

conjugate ofa l}t(t _ b) , a>0, be R. In additibn, a is the dilation
(scale), b is the tranglation.
In this paper, the Morlet wavelet’ is used which is defined as

tZ

Y(r)=e'™e 2 &)

For a non-stationary signal analysis the frequencies of a signal in
the total duration may change within a large range. The range of scale
must be very large for a long time signal. If a fine scale is needed the
calculation may become very time-consuming. Also it is not effective
to extract fine characteristic from a very large scale range and time
duration.

In a similar manner to STFT, we propose Adaptive Wavelet
Transform (AWT). The basic idea of AWT is to break up the signal
into small segments and analyze each time segment with wavelets to
ascertain the scale (or frequency) that exists in the segment. In each
segment calculation we use a smaller range of scales but finer
resolution to calculate the wavelet transform of the signal at each
segment. The range of scales in each segment is adapted to the signal
automaticlly according to the former segment calculation. Equation
(4) is changed into

T

(W, x)a,b)=a™"? f:x,(r)‘l’(—;ll)df ©)

where x,(‘[ ) is same as equation (2). The wavelet transform
involves scales rather than frequencies.

The basic frequency components in a rotor run-up process are
rotating frequency and its harmonics. For extracting amplitude-
frequency curve, the analyses are focused on the rotating frequency.

Consider a simple harmonic signal x(t) such that

x(t) = X, sin(@,t) ™)

The wavelet transform® of x(t) is

(W‘Px)(aab) = \/gXoe_(aw"_%)zejw"b 8)

In a simple rotor-bearing system, the vibration signals during
run-up or run-down can be expressed as follows.

x() = D(t)sin(p(1)) ©)

where amplitude D(7) and phase ¢(¢) are time varying. Noise is
neglected.

We need to know the frequency at each time or the instantaneous
frequency @ (¢), which is the derivative of the phase () §

o(f) = ? (10)

(t) is also time varied during a run-up or run-down process.

If we only consider a very small time range at time ¢, the
instantaneous amplitude D(z)) and frequency @(#,) can be
approximated as a constant. Equation (9) becomes

x(1) = D(1, ) sin(@(t, )t) (1)

Only signals near time [, are calculated at one time of
calculation so that the wavelet transform of x(t) is

(Wyx)(a,b) =aD(t,)e @) -e)’ givtwk (12)
The amplitude of the transform is

(W, x)(a, b)) = JaD(z, e @to-oo (13)

For a given time or translation, when

aw(t,)—w,=0 (14

Equation (13) gets its maximum value

7y x)(a,b),,, = VaD(t,) (s)
Because (t,)=27f(t,). from equations (14) and (15), we can

obtain the instantanecous frequency and amplitude at time £ as
follows.

fl)= (16)

D(ty) =|(Wyx)a,b)|  /a (17

/
max
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For digital calculation, the vibration signal is sampled at
frequency f and when the variable is index k, the signal near f,
can be expressed as

x(k) = D(k,)sinQrf (k)k/ £.) (18)

The instantaneous frequency and amplitude can be calcutaled as
follows.

Flkyy =2t a9)
2ma

/a (20)

max

D(ky) = |, x)(a,b)

For practical calculation we divide each long time domain signal
into many segments. 25% of each segment overlaps with the
preceding segment. To ensure the quality of the results, we use only
50% of the results of wavelet transform at the center translation. After
obtaining the amplitude-frequency curve we use the half power
method to calculate the viscous damping ratios.

2.3 Analysis of a simulated signal

The response of a damped system under rotating unbalance as
rotating speed is sweeping up linearly® is used to compare the STFT
and AWT.

x(2) = X (2)sin(p(t) - q(1)) (2))]
Where
X(0)= X, (0o(t) @,)’ 22)

J1- /0,7 +z00)/ 0,7

oo 2600/ @,
q(t)=tan (1 @)/ 0.7 ) 23
o(t) = (@, +0.5ct)t (24)
o(t) = w, + ct (25)

where c is a constant. Some data in the simulation calculation are as
follows.

Start frequency: S0Hz

Stop frequency: 100Hz

Resonance frequency : 80 Hz

Damping ratio g 1 10%

Sampling frequency: 512Hz

X, =1

Fig. 1 presents the result of STFT. Each segment has 256
sampling points. We have used different numbers of points for one
segment, and 256 points per segment gave the best result at this
situation.
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Fig. 1 The result of Short-Time Fourier Transform

Fig. 2 is the result of AWT. We used an adaptive scale range and
scale resolution to fit each segment. The amplitude-frequency curve
obtained by AWT is smoother and more accurate than the ones
obtained by STFT. The curve calculated by AWT is almost the same
as the theoretical one.
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Fig. 2 The result of Adaptive Wavelet Analysis

3. Experiment and Results

In many rotating machines the rotor may be concentrated on one
location on the shaft. In this paper, we consider a simple rotor-bearing
system. The rotor mass is located at the center of the shaft. The both
ends of the shaft are supported by oil-film bearings. The drawing of
test rig is shown in Fig. 3. The displacement transducer is mounted on
a supporter to measure the rotor displacement. The circular hoop is
used to simulate the touching process of the shaft against the outer
casing. The cirlular hoop is mounted near the rotor.

Displacement

B/— Transducer

— Shaft

x Disk

(a) Without circular hoop
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Displacement

Hoop E/ Transducer

A= >

(b) With circular hoop

Shaft

Fig. 3 A simple rotor-bearing test rig

The experiment comprised of three parts: (1) impact method to
test the frequency response function under non-rotating state, (2)
measuring the response signals during the run-up process when the
circular hoop is not mounted, (3) simulation of touching process. The
hoop is mounted near the disk, and the gap between the shaft and the
hoop is adjusted to an appropriate measure so that the shaft can touch
the hoop when the rotating speed is near the resonant frequency. All
the signals at the run-up process are recorded.

In the non-rotating state, we used the frequency domain modal
analysis method'” to extract the modal parameters from the frequency
response function. The first bending modal frequency and viscous
damping ratio were 84.8Hz and 1.36%, respectively, in the vertical
direction measurement.

In rotating state, the rotor was controlled by a motor to run-up
slowly. In this case, the rotating speed of shaft was time varying. To
obtain an optimal result with less calculation, we used an adaptive
scale adjustment in wavelet analysis so that the frequency has
sufficient precision. With STFT, the shorter window length is fixed,
then the frequency resulotion is fixed. It is difficult to adjust the
window length to obtain a high precision result in STFT.

Fig. 4 shows the time domain displacement signal in the run-up
process when no hoop was mounted. Fig. 5 and 6 are the amplitude-
frequency curve obtained by STFT and AWT, respectively, during the
run-up process when no hoop was mounted. The first resonance
frequency is 78.3Hz and the viscous damping ratio is 16.2%.

Fig. 7 is the time domain displacement signal in the run-up
process when a hoop was mounted and the shaft has touched the hoop
near the resonance frequency. Fig. 8 and 9 are the amplitude-
frequency curve obtained by STFT and AWT, respectively, from the
signal shown in Fig. 7. The first resonance frequency is 76.7Hz and
the viscous damping ratio is 4%.
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Fig. 4 Time domain signal in run-up process, no hoop mounted

Amplitude (mm)
N

0.8

65 70 75 80 85 90 95 100
Frequency (Hz)

Fig. 5 Run-up process with STFT, no hoop mounted
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Fig. 6 Run-up process with AWT, no hoop mounted
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Fig. 7 Time domain signal in run-up process touching the hoop
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Fig. 8 Run-up process touching the hoop with STFT
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Fig. 9 Run-up process touching the hoop with AWT

It is obvious that the results obtained by AWT is better than those
by STFT. During the touching process a unique behavior of the rotor
has been observed. When the shaft runs up against the outer hoop the
rotating speed of the shaft was decreased first, while the amplitude of
vibration continues to grow higher. Then, after the first touching
moment, the rotating speed increased. The damping ratio is much less
than the case when there is no touching process.

4. Conclusions

The results from a simulated signal and a real rotor run-up
process experiments show that both STFT and AWT can be used in
non-stationary signal analysis. AWT gives better results than STFT to
analyze the non-stationary data. The digital simulation results show
that the maximum error of amplitude near the resonance frequency
calculated by STFT and AWT are about 3% and 1%, respectively.
The amplitude-frequency curve obtained by AWT is smoother than
the curve obtained by STFT, which is helpful for further analysis.
Therefore, the AWT method proposed in this paper is more useful to
analyze non-stationary signals.

The experiment results also show that the modal frequency and
damping ratio in operational states are significantly different from the
results in non-operational states. This is why the stiffness and
damping in running states show greater change than in static states.
These results also indicate that it is necessary to analyze rotor
dynamics using its run-up or run-down process.

When the shaft touches a hoop during the run-up process, the
rotating speed 1s slowed down first and then it gradually picks up. The
peak in amplitude-frequency curve is sharper than ones without hoop,
which means the damping ratio becomes smaller by touching the
hoop. In the touching process, the dynamics of the system is very
complex, which is beyond the scope of this paper. However the
amplitude-frequency curve indicates clearly the phenomenon of the
touching process, which can be used as an indicator to monitor the
condition of rotor-bearing system in a run-up or run-down process.
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