DOI QR코드

DOI QR Code

Bistatic ISAR Imaging with UWB Radar Employing Motion Compensation for Time-Frequency Transform

시간-주파수 변환에 요동보상을 적용한 UWB 레이다 바이스테틱 ISAR 이미징

  • Jang, Moon-Kwang (Aerospace Research Center, Saedong Engineering Inc.) ;
  • Cho, Choon-Sik (School of Electronics and Information Engineering, Korea Aerospace University)
  • 장문광 (새동엔지니어링(주) 항공부설연구소) ;
  • 조춘식 (한국항공대학교 항공전자정보공학부)
  • Received : 2015.07.14
  • Accepted : 2015.07.20
  • Published : 2015.07.30

Abstract

In this paper, we improved the clarity and quality of the radar imaging by applying motion compensation for time-frequency transform in B-ISAR imaging. The proposed motion compensation algorithm using UWB radar is verified. B-ISAR algorithm procedure and time-frequency transform for improved motion compensation are provided for theoretical ground. The image was created by a UWB Radar B-ISAR imaging algorithm method. Also, creating a B-ISAR imaging algorithm for motion compensation of time-frequency transformation method was used. The B-ISAR Imaging algorithm is implemented using STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), and WVD(Wigner-Ville Distribution) approaches. The performance of STFT is compared with the GWT and WVD algorithms. It is found that the WVD image shows more clarity and decreased spread phenomenon than other methods.

본 논문에서는 시간-주파수 변환에 요동보상을 적용한 UWB 레이다 Bistatic ISAR (Bistatic Inverse Synthetic Aperture Radar: B-ISAR) 이미징에 적용하여 레이다 이미징의 선명도와 품질을 개선하였다. UWB 레이다를 사용하여 제안하는 시간-주파수 알고리즘을 검증하였으며, 이를 위하여 B-ISAR 알고리즘 절차, 시간-주파수 변환과 요동보상 개선 등 필요한 이론적 근거를 제시하였다. B-ISAR 이미징 알고리즘으로 이미지를 생성하였으며, UWB 바이스테틱 ISAR 이미징 생성시 요동보상을 적용한 시간-주파수 변환 기법인 STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), WVD(Wigner-Ville distribution) 방식을 차례대로 구현하였다. 그리고 STFT, GWT와 WVD 알고리즘을 이용하여 B-ISAR 이미징 알고리즘의 성능을 비교하였으며, 그 결과 WVD가 다른 방식들에 비하여 영상이 선명하고, 퍼짐 현상이 줄어듦을 알 수 있었다.

Keywords

References

  1. Ben Allen, Mischa Dohler, Ernest E. Okon, Wasim Q. Malik, Anthony K. Brown, and David J. Edwords, Ultra-Wideband Antennas and Propagation for Communications, Radar and Imaging, John Wiley and Sons, Ltd., 2007.
  2. Dimitrov Andon, Todor Lazarov, and Kostadinov Pavlov, Bistaic SAR/GISAR/FISAR Geometry, Signal Models and Imaging Algorithms, A John Wiley and Sons, Inc., 2014.
  3. W. K. Lee, Y. K. Kwag, E. Cerrone, and C. J. Baker, "High resolution radar target recognition, international collaboration project between AERC", Korea Aerospace University, and Dept. of E and EE, University College London, UK, Aug. 2017.
  4. M. K. Jang, C. S. Cho, "Target detection for marine radars using a data matrix bank filter", Journal of Electromagnetic Engineering and Science, vol. 13, no. 3, pp. 151-157, 2013. https://doi.org/10.5515/JKIEES.2013.13.3.151
  5. Fred E. Nathanson, Radar Design Principles Signal Processing and the Environment, Second Edition, Scitech Publishing, Inc., pp. 267-349, 1991.
  6. Mark A. Richards, Ph.D, Fundamentals of Radar Signal Processing, McGraw-Hill, pp. 347-383, 2005.
  7. Caner Ozdemir, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, A John Wiley and Sons, Inc, 2012.
  8. A. Moghaddar, E. K. Walton, "Time-frequency distribution analysis of scattering from waveguide cavities", IEEE Transactions on Antennas and Propagation, vol. 41, pp. 677-680, 1993. https://doi.org/10.1109/8.222287
  9. C. Ozdemir, Jont H. Ling, "Time-frequency interpretation of scattering phenomenology in dielectric-coated wires", IEEE Transactions on Antennas and Propagation, vol. 458, pp. 1259-1264, 1997.
  10. L. C. Trintinalia, H. Ling, "Extraction of waveguide scattering features using jont time-frequency ISAR", IEEE Microwave and Guided Wave Letters, vol. 6, no. 1, pp. 10-12, 1996. https://doi.org/10.1109/75.482055
  11. K. T. Kim, I. S. Choi, and H. T. Kim, "Efficient radar target classification using adaptive Jont Time-frequency processing", IEEE Transactions on Antennas and Propagation, vol. 48, no. 12, pp. 1789-1801, 2000. https://doi.org/10.1109/8.901267
  12. H. Kim, H. Ling, "Wavelet analysis of radar echo from finite-sized targets", IEEE Transactions on Antennas and Propagation, vol. 41, pp. 200-207, 1993. https://doi.org/10.1109/8.214611
  13. J. B. Allen, "Short term spectral analysis, synthesis, and modification by discrete Fourier transform", IEEE Trans Acoust, ASSP-25, pp. 235-238, 1977.
  14. A. T. Nuttall, "Wigner distribution function: Relation to short-term spectral estimation, smoothing, and performance in noise", Technical Report 8225, Naval Underwater Systems Center, 1988.
  15. http://en.wikipedia.org/wiki/Gaussian-blur
  16. X. G. Xia, G. Wang, and V. C. Chen, "Quantitative SNR analysis for ISAR imaging using jont time-frequency analysis-short time Fourier tranform", IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 649-659, 2002. https://doi.org/10.1109/TAES.2002.1008993
  17. V. C. Chen, S. Qian, "Jont time-frequency transform for radar range-Doppler imaging", IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 2, pp. 486-499, 1998. https://doi.org/10.1109/7.670330
  18. Raghuveer M. Rao, Ajit S. Bopardikar, Wavelet Transforms-Introduction to Theory and Applications, Addition Wesley Longman Inc, 1998.
  19. 김태환, 최병관, 이희영, 조춘식, "ADC 특성에 따른 능동 위상 배열 레이더 수신기의 이득 설정 방법", 한국전자파학회논문지, 20(1), pp. 52-59, 2009년 1월. https://doi.org/10.5515/KJKIEES.2009.20.1.052