• 제목/요약/키워드: Force measurement

검색결과 1,614건 처리시간 0.133초

고분자 게이트 전극을 이용한 유기박막 트랜지스터의 제조 및 소자성능에 관한 연구 (Fabrication and Characterization of Organic Thin-Film Transistors by Using Polymer Gate Electrode)

  • 장현석;송기국;김성현
    • 폴리머
    • /
    • 제35권4호
    • /
    • pp.370-374
    • /
    • 2011
  • 폴리아닐린(polyaniline, PANI) 전도성 고분자 용액을 camphorsulfonic acid(CSA)로 도핑하여 제조하였고 FTIR을 이용하여 고분자 중합 및 도핑유무를 확인하였다. 제조된 폴리아닐린을 스핀 코팅하여 유기박막 트랜지스터의 게이트 전극으로 사용하였으며, 열처리 온도변화에 따른 전기 전도도 변화를 4-probe measurement로 확인하였다. 또한 표면 특성을 이해하기 위해 atomic force microscope(AFM)와 optical microscope를 이용하였다. 폴리아닐린 게이트전극을 활용하여 얻은 유기박막 트랜지스터의 소자성능은 최고 이동도가 0.15 $cm^2$/Vs, 전류점멸비가 $2.4{\times}10^6$임을 확인하였다. 고분자 전극의 소지특성을 비교분석하기 위해, 같은 구조의 Au 전극소자를 제작하였다. Au 금속전극소자와 유사한 성능을 보인 폴리아닐렌 게이트 전극 소자는 플렉서블 유기박막 트랜지스터 전극으로 충분히 사용될 수 있다.

2단계 MOCVD법에 의해 사파이어 기판 위 성장된 undoped GaN 에피박막의 특성에 미치는 고온성장 온도변화의 영향 (Effects of epilayer growth temperature on properties of undoped GaN epilayer on sapphire substrate by two-step MOCVD)

  • 장경화;권명석;조성일
    • 한국진공학회지
    • /
    • 제14권4호
    • /
    • pp.222-228
    • /
    • 2005
  • 2단계 성장법으로 c-plane 사파이어 단결정 기판 위에 metalorganic chemical vapor deposition(MOCVD)법으로 undoped GaN 에피층을 성장시켰다. 고온 성장시 성장 온도 변화가 undoped GaN 에피층의 표면형상과 거칠기, 구조적 결정성, 광학적 성질, 전기적 성질에 미치는 영향을 연구하였다. 수평형 MOCVD 장치를 이용해 압력 300 Torr 저압에서 성장시켰으며, 저온 핵생성층 성장조건은 $500^{\circ}C$로 고정시키고, 2단계 성장 온도를 $850\~1050^{\circ}C$범위로 변화시켰다. 형성된 undoped GaN 에피층을 원자력현미경, 고분해능 X-선회절장치, 광발광측정, 홀 효과 측정 장치 등을 이용하여 분석, 고찰하였다.

New Evaluation of Initial Growth Mechanisms of Hydroxyapatite on Self-assembled Collagen Nanofibrils by Using ToF-SIMS and AFM Techniques

  • Park, Young-Jae;Choi, Gyu-Jin;Lee, Tae-Geol;Lee, Won-Jong;Moon, Dae-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.397-397
    • /
    • 2010
  • Bone is considered as hierarchically organized biocomposites of organic (collagen) and inorganic (hydroxyapatite) materials. The precise structural dependence between hydroxyapatite (HAp, $Ca_{10}(PO_4)_6(OH)_2)$ crystals and collagen fibril is critical to unique characteristics of bone. To meet those conditions and obtain optimal properties, it is essential to understand and control the initial growth mechanisms of hydroxyapatite at the molecular level, such as other nano-structured materials. In this study, collagen fibrils were prepared by adsorbing native type I collagen molecules onto hydrophobic surface. Hydrophobicity was introduced on the Si wafer surface by using PECVD (plasma enhanced chemical vapor deposition) method and cyclohexane as a precursor. Biomimetic nucleation and growth of HAp on the self-assembled collagen nanofibrils were occurred through incubation of the sample in SBF (simulated body fluid). Chemical and morphological evolution of HAp nanocrystals was investigated by surface-sensitive analytical techniques such as ToF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) and AFM (Atomic Force Microscopy) in the early growth stages (< 24 hrs). The very initial stages (< 12 hrs) of mineralization could be clearly demonstrated by ToF-SIMS chemical mapping of surface. In addition to ToF-SIMS and AFM measurement, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis were conducted to characterize the HAp layer in the late stages. This study is of great importance in the growth of real bone-like materials with a structure analogous to that of natural bones and the development of biomimetic nanomaterials.

  • PDF

초음파를 이용한 광학창 오염방지 모듈 개발 (The Development of the Contamination Prevention Module of an Optical Window Using Ultrasonic Waves)

  • 이창희;전기문;신재수;윤주영;조승현;강상우
    • 한국진공학회지
    • /
    • 제22권4호
    • /
    • pp.175-180
    • /
    • 2013
  • 본 연구에서는 반도체 소자 생산 공정 중 발생하는 오염입자에 의해 실시간 오염입자 측정장치인 In-Situ Particle Monitor(ISPM)의 광학창의 오염을 방지하기 위한 모듈 개발에 관한 연구이다. 개발한 광학창 오염방지 모듈은 실시간으로 측정하는 ISPM 내 광학창 표면에 오염입자가 흡착되는 것을 방지하기 위한 장치로 적합한 초음파 모듈 개발이 성공적 연구의 핵심내용이다. 또한 그 효과를 극대화하기 위한 구조적인 최적화도 필요하지만 초음파 힘의 표면 전달효율 향상 기술도 개발이 필요한 핵심 기술이다. 개발된 광학창 오염방지 모듈이 장착된 ISPM은 양산용 증착공정 장비(BPSG 증착장비) 배기구에 설치되었으며, 공정조건 별 오염방지 모듈의 성능과 더불어 ISPM 측정 효율도 함께 검증하였다.

Observation of Residual PMMA on Graphene Surface by Using IR-Absorption Mapping

  • Oh, Hye Min;Kim, Yong Hwan;Kim, Hyojung;Park, Doo Jae;Lee, Young Hee;Jeong, Mun Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.292.2-292.2
    • /
    • 2013
  • Graphene, a two-dimensional graphite material consisting of sp2-hybridized carbons. The properties of graphene such as extremely high carrier mobility, high thermal conductivity, low resistivity, large specific make it a promising materail of divices and material. Typically, poly (methyl methacrylate) (PMMA) is used when graphene transfer to other substrates. To remove PMMA on graphene, people used to dip the graphene into the acetone. However, it is known that the remove of PMMA on the graphene is difficult to completely using the acetone. Therefore, to remove the PMMA on the graphene surface, many research groups have employed various methods such as the thermal treatment, photothermal method, and other solvent. Nevertheless, a part of PMMA still remain on graphene surface. Usually, to observe the residual PMMA on graphene surface, topography of graphene surface scanned by atomic force microscopy is used. However, in that case, we can not distinguish PMMA and other particles. In this study, to confirm the residual PMMA on graphene surface, we employed novel measurement technique which is available to distinguish PMMA and other particles by means of photothermal effect.

  • PDF

The Effects of Hyaluronic Acid-Carboxymethylcellulose Membrane (GUARDIX-$MB^{(R)}$) Barriers on Prevention of Post-operation Peritoneal Adhesions in Dogs

  • Lee, Sang-Mook;Jang, Hwan-Soo;Bae, Jae-Sung;Kim, Jung-Eun;Jang, Kwang-Ho
    • 한국임상수의학회지
    • /
    • 제25권6호
    • /
    • pp.494-500
    • /
    • 2008
  • The aim of this study was to determine the effectiveness of hyaluronic acid-carboxymethylcellulose membrane (GUARDIX-$MB^{(R)}$) barriers on prevention against post-operative peritoneal adhesions. In this study, fourteen mongrel dogs were divided into two experimental groups: 0.1 % hyaluronic acid (0.1HA) group and hyaluronic acidcarboxymethylcellulose membrane (HA-CMC) group. In order to induce adhesions, the anti-mesenteric serosa of the ileum was exteriorized and then abraded in a standard manner by scraping with a scalpel blade to create homogenous petechial hemorrhagic surface over a $1\;{\times}\;1cm$ area. Solution of 0.1HA were simply coated over the abraded tissues, $1.5\;{\times}\;1.5cm$ HA-CMC membrane was placed over the abraded tissues, allowed to spread across the intra-abdominal organs before closure of the abdomen. On day 1 before and day 1, 4, 7, 14, and 21 after operation, venous blood specimens were collected for measurement of fibrinogen and total WBC. The adhesions were blindly assessed 3 weeks later by using a computerized tensiometer. The fibrinogen and total WBC values of two groups showed no statistical significances. The mean tensile strength (gram force, gf) of formed adhesions day 21 after surgery was $88.1\;{\pm}\;55.70gf$ in the 0.1 % HA group and $24.8\;{\pm}\;22.69gf$ in the HA-CMC group. The tensile strength values of adhesion separation HA-CMC membrane group was significantly lower than the 0.1HA group (p<0.05). Therefore, we suggest that HACMC membrane reduce peritoneal adhesions may be applicable to preventing post-operative intraperitoneal adhesions in dogs.

전기오븐에서 과열증기주입에 따른 열처리가 닭고기의 이화학적 특성변화에 미치는 영향 (Studies on Physico-chemical Properties of Chicken Meat Cooked in Electric Oven Combined with Superheated Steam)

  • 천지연;권봉구;이수현;민상기;홍근표
    • 한국축산식품학회지
    • /
    • 제33권1호
    • /
    • pp.103-108
    • /
    • 2013
  • This study was carried out to observe the effect of superheated steam combined with oven heating on the physico-chemical and sensory properties of chicken meat. Specially, chicken breasts and thighs were heated for 40 min in various heating formulations such as oven heating, superheated steam heating or a combination of two kinds of heating. In the physical properties measurement, the shear force was increased as superheated steam heating time and chicken thighs were higher than chicken breasts in all treatments (p<0.05). The highest level of water holding capacity was solely superheated steam treated chicken for 40 min (p<0.05). The $L^*$ value was decreased but $a^*$ value or $b^*$ value were increased after cooking. Chicken breast exhibited a higher colour value than chicken thigh. Superheated heating was effective to reduce heating loss as 22.64% (p<0.05). However, pH was not different depending on the heating formulation or part of the chicken meat (p>0.05). In the sensory test, the combination of 10 min oven heating and 30 min superheated steam heating was effective to create a good flavour of chicken meat. In this study, an optimum formulation was developed which was a combination of 10 min oven heating and 30 min superheated steam heating. It was more effective to improve the quality of chicken meat than the single heat treatment of chicken meat.

Estimation of fracture toughness of cast steel container from Charpy impact test data

  • Bellahcenea, Tassadit;Aberkane, Meziane
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.639-648
    • /
    • 2017
  • Fracture energy values KV have been measured on cast steel, used in the container manufacture, by instrumented Charpy impact testing. This material has a large ductility on the upper transition region at $+20^{\circ}C$ and a ductile tearing with an expended plasticity before a brittle fracture on the lower transition region at $-20^{\circ}C$. To assess the fracture toughness of this material we use, the $K_{IC}$-KV correlations to measure the critical stress intensity factor $K_{IC}$ on the lower transition region and the dynamic force - displacement curves to measure the critical fracture toughness $J{\rho}_C$, the essential work of fracture ${\Gamma}_e$ on the upper transition region. It is found, using the $K_{IC}$-KV correlations, that the critical stress intensity factor $K_{IC}$ remains significant, on the lower transition region, which indicating that our testing material preserves his ductility at low temperature and it is apt to be used as a container's material. It is, also, found that the $J_{\rho}-{\rho}$ energetic criterion, used on the upper transition region, gives a good evaluation of the fracture toughness closest to those found in the literature. Finally, we show, by using the ${\Gamma}_e-K_{IC}$ relation, on the lower transition region, that the essential work of fracture is not suitable for the toughness measurement because the strong scatter of the experimental data. To complete this study by a numerical approach we used the ANSYS code to determine the critical fracture toughness $J_{ANSYS}$ on the upper transition region.

답전윤환 인삼재배 예정지 토양의 물 이동특성 평가 (Assessment on Water Movement in Paddy-Upland Rotation Soil Scheduled for Ginseng Cultivation)

  • 허승오;이윤정;연병열;전상호;하상건;김정규
    • 한국약용작물학회지
    • /
    • 제17권3호
    • /
    • pp.204-209
    • /
    • 2009
  • This study was conducted to assess water movement in paddy-upland rotation soil scheduled for ginseng cultivation through the measurement of infiltration and permeability of soil water. Soil sample was divided with four soil layers. The first soil layer (to 30cm from top soil) was loamy sand, the second and the third soil layers (30$\sim$70 ㎝) were sand, and the fourth (< 120 ㎝) was sandy loam. The soil below 130 ㎝ of fourth soil layer was submerged under water. The shear strength, which represents the resisting power of soil against external force, was 3.1 kPa in the first soil layer. This corresponded to 1/8 of those of another soil layer and this value could result in soil erosion by small amount of rainfall. The rates of infiltration and permeability depending on soil layers were 39.86 cm $hr^{-1}$ in top soil, 2.34 cm $hr^{-1}$ in 30$\sim$70 ㎝ soil layer, 5.23 cm $hr^{-1}$ and 0.18 cm $hr^{-1}$ in 70$\sim$120 ㎝ soil layer, with drain tile, and without drain tile, respectively. We consider that ground water pooled in paddy soil and artificial formation of soil layer could interrupt water canal within soil and affect negatively on water movement. Therefore, we suggest that to drain at 5 m intervals be preferable when it makes soil dressing or soil accumulation to cultivate ginseng in paddy-upland rotation soil to reduce failure risk of ginseng cultivation.

Atomic Layer Deposited ZrxAl1-xOy Film as High κ Gate Insulator for High Performance ZnSnO Thin Film Transistor

  • Li, Jun;Zhou, You-Hang;Zhong, De-Yao;Huang, Chuan-Xin;Huang, Jian;Zhang, Jian-Hua
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.669-677
    • /
    • 2018
  • In this work, the high ${\kappa}$ $Zr_xAl_{1-x}O_y$ films with a different Zr concentration have been deposited by atomic layer deposition, and the effect of Zr concentrations on the structure, chemical composition, surface morphology and dielectric properties of $Zr_xAl_{1-x}O_y$ films is analyzed by Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and capacitance-frequency measurement. The effect of Zr concentrations of $Zr_xAl_{1-x}O_y$ gate insulator on the electrical property and stability under negative bias illumination stress (NBIS) or temperature stress (TS) of ZnSnO (ZTO) TFTs is firstly investigated. Under NBIS and TS, the much better stability of ZTO TFTs with $Zr_xAl_{1-x}O_y$ film as a gate insulator is due to the suppression of oxygen vacancy in ZTO channel layer and the decreased trap states originating from the Zr atom permeation at the $ZTO/Zr_xAl_{1-x}O_y$ interface. It provides a new strategy to fabricate the low consumption and high stability ZTO TFTs for application.