DOI QR코드

DOI QR Code

Atomic Layer Deposited ZrxAl1-xOy Film as High κ Gate Insulator for High Performance ZnSnO Thin Film Transistor

  • Li, Jun (School of Material Science and Engineering, Shanghai University) ;
  • Zhou, You-Hang (School of Material Science and Engineering, Shanghai University) ;
  • Zhong, De-Yao (School of Material Science and Engineering, Shanghai University) ;
  • Huang, Chuan-Xin (School of Material Science and Engineering, Shanghai University) ;
  • Huang, Jian (School of Material Science and Engineering, Shanghai University) ;
  • Zhang, Jian-Hua (Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University)
  • Received : 2018.01.31
  • Accepted : 2018.06.13
  • Published : 2018.11.10

Abstract

In this work, the high ${\kappa}$ $Zr_xAl_{1-x}O_y$ films with a different Zr concentration have been deposited by atomic layer deposition, and the effect of Zr concentrations on the structure, chemical composition, surface morphology and dielectric properties of $Zr_xAl_{1-x}O_y$ films is analyzed by Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and capacitance-frequency measurement. The effect of Zr concentrations of $Zr_xAl_{1-x}O_y$ gate insulator on the electrical property and stability under negative bias illumination stress (NBIS) or temperature stress (TS) of ZnSnO (ZTO) TFTs is firstly investigated. Under NBIS and TS, the much better stability of ZTO TFTs with $Zr_xAl_{1-x}O_y$ film as a gate insulator is due to the suppression of oxygen vacancy in ZTO channel layer and the decreased trap states originating from the Zr atom permeation at the $ZTO/Zr_xAl_{1-x}O_y$ interface. It provides a new strategy to fabricate the low consumption and high stability ZTO TFTs for application.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of China, Shanghai Science and Technology Commission, National Science Foundation for Distinguished Young Scholars of China, Science and Technology Commission of Shanghai Municipality

References

  1. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H. : Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004) https://doi.org/10.1038/nature03090
  2. Ryu, M.K., Yang, S., Park, S.H.K., Hwang, C.S., Jeong, J.K. : Impact of Sn/Zn ratio on the gate bias and temperature-induced instability of Zn-In-Sn-O thin film transistors. Appl. Phys. Lett. 95, 173508 (2009) https://doi.org/10.1063/1.3257726
  3. Rim, Y.S., Ahn, B.D., Park, J.S., Kim, H.J. : Manifestation of reversal conductivity on high pressurizing of solution-processed ZnSnO thin-film transistors at low temperature. J. Phys. D Appl. Phys. 47, 045502 (2014) https://doi.org/10.1088/0022-3727/47/4/045502
  4. Sahoo, A.K., Wu, G.M. : Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors. Thin Solid Films 605, 129 (2016) https://doi.org/10.1016/j.tsf.2015.12.016
  5. Lee, W.J., Chun, M.H., Cheong, K.S., Park, K.C., Park, C.O., Cao, G. : Characteristics of SiO2 film grown by atomic layer deposition as the gate insulator of low-temperature polysilicon thin-film transistors. Solid State Phenom. 124, 247 (2007)
  6. Yang, W., Song, K., Jung, Y., Jeong, S., Moon, J. : Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors. J. Mater Chem. C 1, 4275 (2013) https://doi.org/10.1039/c3tc30550c
  7. Kim, Y.G., Avis, C., Hwang, H.R., Kim, T.W., Seol, Y.G., Jang, J. : Effect of strontium addition on stability of Zinc-Tin-Oxide thin-film transistors fabricated by solution process. J. Disp. Technol. 10, 939 (2014) https://doi.org/10.1109/JDT.2014.2303148
  8. Huang, C.X., Li, J., Fu, Y.Z., Zhang, J.H., Jiang, X.Y., Zhang, Z.L. : Effect of hafnium doping on density of states in dual-target magnetron co-sputtering HfZnSnO thin film transistors. Appl. Phys. Lett. 107, 213504 (2015) https://doi.org/10.1063/1.4936376
  9. Huang, C.X., Li, J., Fu, Y.Z., Zhang, J.H., Jiang, X.Y., Zhang, Z.L., Yang, Q.H. : Characterization of dual-target co-sputtered novel Hf-doped ZnSnO semiconductors and the enhanced stability of its associated thin film transistors. J. Alloy. Compd. 681, 81 (2016) https://doi.org/10.1016/j.jallcom.2016.04.167
  10. Huang, C.X., Li, J., Fu, Y.Z., Zhang, J.H., Jiang, X.Y., Zhang, Z.L. : Suppression in the negative bias illumination instability of ZnSnO thin-film transistors using hafnium doping by dual-target magnetron cosputtering system. IEEE T. Electron. Dev. 63, 3552 (2016) https://doi.org/10.1109/TED.2016.2589240
  11. Han, D.S., Park, J.H., Kang, M.S., Choi, D.K., Park, J.W. : Highly stable hafnium-tin-zinc oxide thin film transistors with stacked bilayer active layers. Curr. Appl. Phys. 15, 94 (2015) https://doi.org/10.1016/j.cap.2014.11.007
  12. Kang, I., Park, C.H., Chong, E., Lee, S.Y. : Role of Si as carrier suppressor in amorphous Zn-Sn-O. Curr. Appl. Phys. 12, S12 (2012) https://doi.org/10.1016/j.cap.2012.05.044
  13. Choi, W.S., Jo, H., Kwon, M.S., Jung, B.J. : Control of electrical properties and gate bias stress stability in solution-processed a-IZO TFTs by Zr doping. Curr. Appl. Phys. 14, 1831 (2014) https://doi.org/10.1016/j.cap.2014.10.018
  14. Jeon, H.J., Maeng, W.J., Park, J.S. : Effect of Al concentration on the electrical characteristics of solution-processed Al doped ZnSnO thin film transistors. Ceram. Int. 40, 8769 (2014) https://doi.org/10.1016/j.ceramint.2014.01.098
  15. Banger, K.K., Peterson, R.L., Mori, K., Yamashita, Y., Leedham, T., Sirringhaus, H. : High performance, low temperature solution-processed barium and strontium doped oxide thin film transistors. Chem. Mater. 26, 1195 (2014) https://doi.org/10.1021/cm4035837
  16. Jeonga, K.S., Song, J., Lima, D., Lee, M.S., Kim, H., Cho, M.H. : Structural evolution and defect control of yttrium-doped $ZrO_2$ films grown by a sol-gel method. Appl. Surf. Sci. 320, 128 (2014) https://doi.org/10.1016/j.apsusc.2014.08.183
  17. Huang, C.X., Li, J., Zhong, D.Y., Zhao, C.Y., Zhu, W.Q., Zhang, J.H., Jiang, X.Y., Zhang, Z.L. : Atomic layer deposition deposited high dielectric constant (${\kappa}$) ZrAlOx gate insulator enabling high performance ZnSnO thin film transistors. Superlattices Microstruct. 109, 852 (2017) https://doi.org/10.1016/j.spmi.2017.06.011
  18. Ha, T.J., Dodabalapur, A. : Photo stability of solution-processed low-voltage high mobility zinc-tin-oxide/ZrO2 thin-film transistors for transparent display applications. Appl. Phys. Lett. 102, 123506 (2013) https://doi.org/10.1063/1.4795302
  19. Wilk, G.D., Wallace, R.M., Anthony, J.M. : High-${\kappa}$ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001) https://doi.org/10.1063/1.1361065
  20. Tewg, J.Y., Kuo, Y., Lu, J. : Suppression of crystallization of tantalum oxide thin film by doping with zirconium. J. Electrochem. Soc. 8, G27 (2005)
  21. Puurunen, R.L. : Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005) https://doi.org/10.1063/1.1940727
  22. Huang, C.X., Li, J., Zhong, D.Y., Zhao, C.Y., Zhang, J.H., Jiang, X.Y., Zhang, Z.L. : Realization of solution-processed semiconducting single-walled carbon nanotubes thin film transistors with atomic layer deposited $ZrAlO_x$ gate insulator. Appl. Phys. Lett. 110, 253510 (2017) https://doi.org/10.1063/1.4989804
  23. Zhang, J.H., Ding, X.W., Li, J., Zhang, H., Jiang, X.Y., Zhang, Z.L. : Performance enhancement in InZnO thin-film transistors with compounded $ZrO_2-Al_2O_3$ nanolaminate as gate insulators. Ceram. Int. 42, 8115 (2016) https://doi.org/10.1016/j.ceramint.2016.02.014
  24. Lee, S., Choi, H., Shin, S., Park, J., Ham, G., Jung, H., Jeon, H. : Permeation barrier properties of an $Al_2O_3/ZrO_2$ multilayer deposited by remote plasma atomic layer deposition. Curr. Appl. Phys. 14, 552 (2014) https://doi.org/10.1016/j.cap.2013.11.053
  25. Oh, J., Shin, S., Park, J., Ham, G., Jeon, H. : Characteristics of $Al_2O_3/ZrO_2$ laminated films deposited by ozone-based atomic layer deposition for organic device encapsulation. Thin Solid Films 599, 119 (2016) https://doi.org/10.1016/j.tsf.2015.12.044
  26. Abdullah, H., Norazia, M.N., Shaari, S., Nuawi, M.Z., Mohamed, N.S. : Dan, low-doping effects of nanostructure ZnO:Sn tin films annealed at different temperature in nitrogen ambient to be applied as an anti-reflecting coating. Am. J. Eng. Appl. Sci. 3, 171 (2010) https://doi.org/10.3844/ajeassp.2010.171.179
  27. Kim, S.J., Yoon, D.H., Rim, Y.S., Kim, H.J. : Low-temperature solution-processed $ZrO_2$ gate insulators for thin-film transistors using high-pressure annealing. Electrochem. Solid-State Lett. 14, E35 (2011) https://doi.org/10.1149/2.006111esl
  28. Rim, Y.S., Kim, D.L., Jeong, W.H., Kim, H.J. : Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Appl. Phys. Lett. 97, 233502 (2010) https://doi.org/10.1063/1.3524514
  29. Parthiban, S., Kwon, J.Y. : Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor. J. Mater. Res. 29, 1585 (2014) https://doi.org/10.1557/jmr.2014.187
  30. Valletta, A., Mariucci, L., Fortunato, G. : Surface-scattering effects in polycrystalline silicon thin-film transistors. Appl. Phys. Lett. 82, 3119 (2003) https://doi.org/10.1063/1.1571960
  31. Volkel, A.R., Street, R.A., Knipp, D. : Carrier transport and density of state distributions in pentacene transistors. Phys. Rev. B 66, 195336 (2002) https://doi.org/10.1103/PhysRevB.66.195336
  32. Oh, H., Yoon, S.M., Ryu, M.K., Hwang, C.S., Yang, S., Park, S.H.K. : Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor. Appl. Phys. Lett. 97, 183502 (2010) https://doi.org/10.1063/1.3510471
  33. Chowdhury, M.D.H., Migliorato, P., Jang, J. : Light induced instabilities in amorphous indium-gallium-zinc-oxide thin-film transistors. Appl. Phys. Lett. 97, 173506 (2010) https://doi.org/10.1063/1.3503971
  34. Jung, H.Y., Park, S.Y., Kim, J.I., Yang, H., Choa, R., Kim, D.H., Bae, J.U., Shin, W.S., Jeong, J.K. : Investigation of co-sputtered LiZnSnO thin film transistors. Thin Solid Films 522, 435 (2012) https://doi.org/10.1016/j.tsf.2012.08.009
  35. Kim, U.K., Rha, S.H., Kim, J.H., Chung, Y.J., Jung, J., Hwang, E.S., Lee, J., Park, T.J., Choic, J.H., Hwang, C.S. : Study on the defects in metal-organic chemical vapor deposited zinc tin oxide thin films using negative bias illumination stability analysis. J. Mater. Chem. C 1, 6695 (2013)
  36. Gavryushin, V., Raciukaitis, G., Juodzbalis, D., Kazlauskas, A., Kubertavicius, V. : Characterization of intrinsic and impurity deep levels in ZnSe and ZnO crystals by nonlinear spectroscopy. J. Cryst. Growth 138, 924 (1994) https://doi.org/10.1016/0022-0248(94)90933-4
  37. Takechi, K., Nakata, M., Eguchi, T., Yamaguchi, H., Kaneko, S. : Temperature-dependent transfer characteristics of amorphous $InGaZnO_4$ thin-film transistors. Jpn. J. Appl. Phys. 48, 011301 (2009) https://doi.org/10.1143/JJAP.48.011301
  38. Kim, J., Bang, S., Lee, S., Shin, S., Park, J., Seo, H., Jeon, H. : A study on $H_2$ plasma treatment effect on a-IGZO thin film transistor. J. Mater. Res. 27, 2318 (2012) https://doi.org/10.1557/jmr.2012.199
  39. Tai, Y.H., Chiu, H.L., Chou, L.S. : The deterioration of a-IGZO TFTs owing to the copper diffusion after the process of the source/drain metal formation. J. Electrochem. Soc. 159, 200 (2012)
  40. Kim, G.H., Jeong, W.H., Ahn, B.D., Shin, H.S., Kim, H.J., Kim, H.J., Ryu, M.K., Park, K.B., Seon, J.B., Lee, S.Y. : Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 96, 163506 (2010) https://doi.org/10.1063/1.3413939
  41. Janotti, A., Van de Walle, C.G. : Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005) https://doi.org/10.1063/1.2053360
  42. Kamiya, T., Nomura, K., Hosono, H. : Electronic structure of the amorphous oxide semiconductor a-$InGaZnO_4-x$: Tauc-Lorentz optical model and origins of subgap states. Phys. Status Solidi A 206, 860 (2009) https://doi.org/10.1002/pssa.200881303
  43. Seo, H., Park, C.J., Cho, Y.J., Kim, Y.B., Choi, D.K. : Correlation of band edge native defect state evolution to bulk mobility changes in ZnO thin films. Appl. Phys. Lett. 96, 232101 (2010) https://doi.org/10.1063/1.3424790

Cited by

  1. Low-temperature fabrication of Sr–N co-doped In2O3 thin film by aqueous route and its application to high performance InSrNO thin film transistor vol.52, pp.43, 2018, https://doi.org/10.1088/1361-6463/ab32ae
  2. Heterogeneous Crystallinity of Atomic-Layer-Deposited Zinc Oxide Thin Film Using Resonance Raman Scattering Analysis vol.17, pp.4, 2021, https://doi.org/10.1007/s13391-021-00287-8