모바일 시스템에서는 비용 및 전력 효율이 중요하기 때문에 부동소수점 연산기 개발 시 32-비트 데이터 형식대신 24-비트 데이터 형식을 사용하는 것이 좋다. 하지만 24-비트 데이터 형식을 사용할 경우 32-비트 데이터 형식에 비해 연산기의 정확도가 낮아질 수 있다. 3D 그래픽과 같이 연속적인 부동소수점 연산 처리가 많이 요구될 경우 연산기의 정확도에 대한 논의와 검증이 중요하다. 나눗셈은 3D 그래픽에 사용되는 연산 중 OpenGL에서 규정한 정확도를 만족하기 가장 어려운 연산 중 하나이다. 현재까지 OpenGL에서 규정한 정확도를 만족하는 것이 대수적으로 검증된 24-비트 부동소수점 제산기는 알려진 바가 없다. 본 논문에서는 24-비트 부동소수점 제산기를 분석하고, OpenGL ES 3.0에서 규정한 $10^{-5}$의 정확도를 만족함을 대수적으로 검증한다.
In general, processing flow of the conventional floating-point multiplication consists of either multiplication, addition, normalization, and rounding stage of the conventional floating-point multiplier requries a high speed adder for increment, increasing the overall execution time and occuping a large amount of chip area. A floating-point multiplier performing addition and IEEE rounding in parallel is designed by using the carry select addder used in the addition stage and optimizing the operational flow based on the charcteristics of floating point multiplication operation. A hardware model for the floating point multiplier is proposed and its operational model is algebraically analyzed in this paper. The proposed floating point multiplier does not require and additional execution time nor any high spped adder for rounding operation. Thus, performance improvement and cost-effective design can be achieved by this suggested approach.
마이크로프로세서에서 부동소수점 연산은 결과의 정확도를 높이기 위하여 실수형 데이터를 대상으로 시행하는 덧셈, 뺄셈, 곱셈, 나눗셈 등의 계산을 의미한다. 일반적으로 프로세서를 설계할 때는 복잡도 때문에 부동소수점 연산은 제외하고 정수형 연산만을 지원하는 경우가 많다. 그러나, 공학 기술 연산, 디지털 신호처리 뿐 만이 아니라, 오늘날 각광을 받고 있는 인공지능 및 신경망에 대한 연산을 수행하기 위하여 필요에 따라서 부동소수점 연산이 포함되어야 한다. 본 논문에서는 VHDL을 이용하여 부동소수점 연산 명령어 기능을 갖는 32 비트 ARMv4 계열의 프로세서를 설계하고, ModelSim으로 검증하였다. 그 결과, ARM의 부동소수점 명령어에 대한 연산을 성공적으로 수행할 수 있었다.
최근 그래픽 프로세서, 멀티미디어 프로세서, 음성처리 프로세서 등에서 부동소수점이 주로 사용된다. 한편 C, Java 등 고급언어에서는 단정도실수와 배정도실수를 사용하고 있다. 본 논문에서는 32비트 곱셈기를 사용하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 배정도실수 가수를 상위 부분과 하위 부분으로 나누고, 상위 부분의 역수를 골드스미스 알고리즘으로 계산하고, 이를 초기값으로 하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 제안한 알고리즘은 입력값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블에서 평균곱셈 횟수를 계산한다.
The use of fixed-point digital signal processors, such as the TMS 320C25, requires scaling of data at each arithmetic step to prevent overflows while keeping the accuracy. A software which automatizes this process is developed for TMS 320C25. The programmers use a model of a hypothetical floating-point digital signal processor and a floating-point format for data representation. However, the program and data are automatically translated to a fixed-point version by this software. Thus, the execution speed is not sacrificed. A fixed-point variable has a unique binary-point location, which is dependent on the range of the variable. The range is estimated from the floating-point simulation. The number of shifts needed for arithmetic or data transfer step is determined by the binary-points of the variables associated with the operation. A fixed-point code generator is also developed by using the proposed automatic scaling software. This code generator produces floating-point assembly programs from the specifiations of FIR, IIR, and adaptive transversal filters, then floating-point programs are transformed to fixed-point versions by the automatic scaling software.
본 논문에서는 실시간 3D 가속을 효과적으로 하기 위해 기하학 처리 과정에 적합한 부동 소수점 연산기를 설계하였다. 설계한 부동 소수점 연산기는 IEEE-754 단정도 형식을 지원하도록 하여 기하학 처리에 적합하게 하였고 설계한 부동 소수점 연산기는 Xilinx-Vertex2에서 부동소수점 덧셈/곱셈기는 100 MHz, 부동소수점 NR 역수 계산기는 120 MHz, 부동 소수점 멱승기는 200 MHz, 부동 소수점 역 제곱근 연산기는 120 MHz의 동작 주파수를 각각 확인 하였다. 또한 설계된 부동소수점 연산기를 이용해 실제 기하학 프로세서를 구현하여 실제 3B 데이터 처리를 확인하였다.
최근 그래픽 프로세서, 멀티미디어 프로세서, 음성처리 프로세서 등에서 부동소수점이 주로 사용된다. C, Java 등 고급언어에서는 단정도실수와 배정도실수를 사용하고 있다. 본 논문에서는 32 비트 곱셈기를 사용하여 배정도실수의 역수를 계산하는 알고리즘을 제안한다. 배정도 실수 가수를 상위 부분과 하위 부분으로 나누고, 상위 부분의 역수를 뉴턴-랍손 알고리즘으로 계산한다. 그리고 이를 초기값으로 하여 배정도실수의 역수를 계산한다. 제안한 알고리즘은 입력값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블에서 평균 곱셈 횟수를 계산한다.
A software implementation of floating-point addition and multiplication is presented. For this, the ANSI/IEEE standard for binary floating-point arithmetic is reviewed briefly. The architecture and behavior of the $Intel^{(R)}\;80{\times}87$ FPU is fully studied and basic algorithms for floating-point addition and multiplication are used for the implementation. Some examples and their verifications are also presented.
디지털 신호처리 알고리즘들은 실제 시스템에 적용할 때 임베디드 시스템 등 하드웨어의 성능과 소비전력 및 비용에 제약이 있을 경우 연산 정밀도가 높은 floating-point 연산 대신 제한된 정밀도와 적은 연산 비용을 요구하는 fixed-point 연산을 사용하여 구현한다. 시스템의 개발단계에서는 적용할 알고리즘을 floating-point 연산을 이용한 코드를 먼저 작성한 후 이를 fixed-point 연산으로 대체하는 과정을 거치게 되는데, 이는 숙련된 개발자와 상당한 양의 개발기간을 요하는 까다로운 작업이다. 이에 본 연구에는 코드작성 편의를 높이고 개발기간을 단축하기 위해 C++ template 기반의 fixed-point 연산 라이브러리를 개발하였다. 이는 floating-point 연산 코드와 fixed-point 연산 코드를 별도로 개발할 필요 없이 하나의 코드를 이용하여 자유로이 연산 정밀도를 지정할 수 있으며 개발자는 기존의 floating-point 연산을 이용하는 코드를 작성하는 것처럼 쉽게 코드를 작성할 수 있도록 한다. 또한, template 기반으로 작성되어 기존의 연구들과 달리 추가적인 작업도구 없이도 범용 C++ 컴파일러가 최적화된 코드를 생성할 수 있도록 되어있는 것이 특징이다.
The commonly used Newton-Raphson's floating-point number divider algorithm performs two multiplications in one iteration. In this paper, a tentative K'th Newton-Raphson's floating-point number divider algorithm which performs K times multiplications in one iteration is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation in single precision and double precision divider is derived from many reciprocal tables with varying sizes. In addition, an error correction algorithm, which consists of one multiplication and a decision, to get exact result in divider is proposed. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number divider unit. Also, it can be used to construct optimized approximate reciprocal tables.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.