• Title/Summary/Keyword: Flexible Structure System

Search Result 637, Processing Time 0.026 seconds

Dynamic Characteristic Analysis of a Flexible Beam Actuated by Moving Coil and DC Motor (가동 코일 및 DC Motor로 작동되는 유연한 빔의 운동 특성 해석)

  • Yu, Hwajoon;Jeong, Wontaick;Nam, Yoonsu
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.15-23
    • /
    • 1999
  • Active damping system is generally used for the vibration suppression and precise motion control for the flexible structure. This application can be easily found on the space structure and driving mechanism of optical storage devices. Although a control system using the flexible structure has many advantages over using rigid mechanism in driving energy saving, system weights, and etc., more complex and precise control strategies are required. A position control system using flexible structure and the concept of active damper is designed and manufactured, which is driven by slide DC motor and moving coil motor located at the tip of the flexible beam. Dynamic characteristics of this system are investigated by analytic and experimental ways. By the comparison of those two results, a nominal reference model for this system is proposed.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

The use of load pressure feedback in designing high performance electro-hydraulic speed controller for a flexible structure (대부하 탄성 구조물의 부하압력 피이드백에 관한 연구)

  • 김영대;정인수;김종규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.310-314
    • /
    • 1988
  • In designing a high performance electrohydraulic control system for a large flexible structure, several flexible structural modes should be taken into account in a range of hydraulic control system bandwidth. The procedures of modeling a flexible mode control system and designing the high pass filter of load pressure feedback are presented. Example analysis varifies the presented analysis.

  • PDF

Dynamic Modeling of Planar System Consisting of Two Flexible Links and Experiment (두 개의 유연 링크로 이루어진 2차원 구조물의 동적 모델링 및 실험)

  • Choi, Min Seop;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.865-874
    • /
    • 2016
  • This research is concerned with the experimental investigation on the vibrations of a flexible two-link system for verifying the theoretical result from simplified equations of motion for the system along with the kinematical synthesis are proposed to simulate the elastic vibrations of a previous study. The structure consists of flexible two-links; The link 2 is attached to the end of the link 1. The link 1 is made of composite fiber reinforced polymer and the link 2 is an aluminum beam. In order to verify the theoretical result, a flexible two-link system operated by the AC and RC servo motors was constructed. Experimental results show that the dynamic modeling approach and the kinematical synthesis proposed in this paper are effective.

Vibration Control of Flexible Structures Using ER Dampers (ER 댐퍼를 이용한 유연구조물의 진동제어)

  • 최승복;이재홍
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.313-323
    • /
    • 1998
  • This paper addresses a sliding mode control of vibration in a flexible structure using ER(electro-rheological) dampers. A clamped-clamped flexible structure system supported by two short columns is considered. Three ER dampers to be operated in shear mode are designed on the basis of Bingham model of the arabic gum-based ER fluid, and attached to the flexible beam structure. After deriving the governing equation of motion and associated boundary conditions, a sliding mode controller is formulated to effectively suppress the vibration of the beam structure caused by sinusoidal and random excitations. In the formulation of the controller, parameter variations such as natural frequency deviation are treated to take into account the robustness of control system. The effectiveness of the proposed control system is confirmed by both simulation and experimental results.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식;김창부
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

Vibration Control of Flexible Structures using ER Fluid Dampers (ER댐퍼를 이용한 유연 구조물의 진동제어)

  • 이재홍;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.243-247
    • /
    • 1996
  • This paper presents a vibration control of a flexible structure using a controllable ER fluid damper. A clamped-clamped flexible structure system supported by two short columns mimicking a small-sized bridge system is considered. An ER fluid damper which is operated in shear mode is designed and attached to the middle of the flexible structure. The governing equation of motion and associated boundary conditions are derived from Hamilton's principle. A sliding mode control is formulated in order to actively suppress the vibration of the structure due to external excitations. Experimental control results are presented in the frequency domain.

  • PDF

Symbolic modeling of a 4-bar link flexible manipulator (4절기구를 가진 유연한 조작기의 기호적 모델링)

  • 이재원;주해호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.559-564
    • /
    • 1993
  • Nonlinear equation of motion of the flexible manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equations of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to high order. A manipulator with a flexible 4 bar link mechanism is a constrained system whose equations are sensitive to numerical integration error. This constrained system is solved using the null space matrix of the constraint Jacobian matrix. Singular value decomposition is a stable algorithm to find the null space matrix.

  • PDF

Investigating the "pendulum column" isolator with flexible piers

  • Abdallah Azizi;Majid Barghian
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.405-413
    • /
    • 2023
  • Various methods have been used to strengthen structures against earthquakes. Isolator systems are among the methods to control the structure's response. Instead of increasing the strength and capacity of the structure, these systems react to earthquakes. In this paper, an isolator system was investigated with the flexible piers of ∨ and ∧ elements, which were perpendicular to each other and connected by a rod hinged at both ends. The behavior of the isolator system was studied. Many structures have non-rigid connections; the effect of this issue was considered in the pendulum column's performance in this paper. Its mathematical equations were derived, solved with MATLAB software, and compared with ABAQUS results. Later on, the isolator system was investigated during different earthquakes. The results show that this mechanism is suitable as an isolator. The period was found to be longer in the flexible pier form. The flexible piers have an influential role in the system's response by reducing the system's stiffness considerably. Among the different damping ratios, those with more than 15% had better results. Finally, the tested model verified the theory.

Structure-Control Combined Design for 3-D Flexible Structure (3차원 유연구조물에 대한 구조-제어 통합설계)

  • Park Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.