• Title/Summary/Keyword: Fire blight

Search Result 55, Processing Time 0.043 seconds

Screening of Bacterial Antagonists to Develop an Effective Cocktail against Erwinia amylovora

  • Choi, Dong Hyuk;Choi, Hyun Ju;Kim, Yeon Ju;Lim, Yeon-Jeong;Lee, Ingyeong;Park, Duck Hwan
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.152-161
    • /
    • 2022
  • Several types of chemical bactericides have been used to control fire blight. However, their excessive usage leads to environmental deterioration. Therefore, several researchers have analyzed antagonistic microorganisms as promising, effective, and safe biological control agents (BCAs). The primary aim of this study was to screen for potential antagonistic bacteria that suppress Erwinia amylovora. Among the 45 isolates studied, 5 strains showed the largest inhibition zone against E. amylovora. 16S rRNA gene sequencing identified them as Bacillus amyloliquefaciens (KPB 15), B. stratosphericus (KPB 21), B. altitudinis (KPB 25), B. safensis (KPB 31), and B. subtilis (KPB 39). KPB 25 and 31 reduced the lesion size of fire blight by 50% in immature apple fruits, and did not show antagonism against each other. Therefore, KPB 25 and 31 were selected to develop an antagonistic mixture against fire blight. Although the mixture with KPB 25 and 31 showed a slightly increased ability to reduce lesion size on immature fruits, they did not exhibit a synergistic effect in reducing E. amylovora population compared to each strain alone. Nevertheless, we have identified these two strains as useful and novel BCAs against fire blight with additional benefits safety and potential in developing a mixture without loss of their activity, owing to the absence of antagonism against each other.

Survival of Erwinia amylovora on Surfaces of Materials Used in Orchards

  • Choi, Hyun Ju;Kim, Yeon Ju;Lim, Yeon-Jeong;Park, Duck Hwan
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.89-93
    • /
    • 2019
  • Fire blight disease caused by the bacterium, Erwinia amylovora, was observed in apple and pear orchards in Korea in 2015. Since then, it has spread, sometimes over long distances to other orchards. Therefore, we examined the ability of E. amylovora to survive in soils and on the surfaces of common materials such as T-shirts, wrist bands, pruning shears, and rubber boots by both conventional PCR (cPCR) and quantitative PCR (qPCR) methods. E. amylovora was detected in all materials tested in this study and survived for sufficiently long periods to cause fire blight disease in new sites. Thus, based on the results of this study, sanitation protocols must be applied to equipment during orchard work.

Discrimination and Detection of Erwinia amylovora and Erwinia pyrifoliae with a Single Primer Set

  • Ham, Hyeonheui;Kim, Kyongnim;Yang, Suin;Kong, Hyun Gi;Lee, Mi-Hyun;Jin, Yong Ju;Park, Dong Suk
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.194-202
    • /
    • 2022
  • Erwinia amylovora and Erwinia pyrifoliae cause fire blight and black-shoot blight, respectively, in apples and pears. E. pyrifoliae is less pathogenic and has a narrower host range than that of E. amylovora. Fire blight and black-shoot blight exhibit similar symptoms, making it difficult to distinguish one bacterial disease from the other. Molecular tools that differentiate fire blight from black-shoot blight could guide in the implementation of appropriate management strategies to control both diseases. In this study, a primer set was developed to detect and distinguish E. amylovora from E. pyrifoliae by conventional polymerase chain reaction (PCR). The primers produced amplicons of different sizes that were specific to each bacterial species. PCR products from E. amylovora and E. pyrifoliae cells at concentrations of 104 cfu/ml and 107 cfu/ml, respectively, were amplified, which demonstrated sufficient primer detection sensitivity. This primer set provides a simple molecular tool to distinguish between two types of bacterial diseases with similar symptoms.

Effect of Rainfall During the Blossom Infection Risk Period on the Outbreak of Fire Blight Disease in Chungnam province (꽃감염 위험기간 중의 강우가 충남지역 과수 화상병 발병에 미치는 영향)

  • Byungryun Kim;Yun-Jeong Kim;Mi-Kyung Won;Jung-Il Ju;Jun Myoung Yu;Yong-Hwan Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.302-310
    • /
    • 2023
  • In this study, the extent of the impact of rainfall on the outbreak of fire blight during the blossom infection risk period was explored. In the Chungnam province, the outbreak of fire blight disease began in 2015, and changes in the outbreak's scale were most pronounced between 2020 and 2022, significantly escalating from 63 orchards in 2020 to 170 orchards in 2021, before decreasing to 46 orchards in 2022. In 2022, the number of incidence has decreased and the number of canker symptom in branches has also decreased. It was evaluated that the significant decrease of fire blight disease in 2022 was due to the dry weather during the flowering season. In other words, this yearly fluctuation in fire blight outbreaks was correlated with the presence or absence of rainfall and accumulated precipitation during the blossom infection risk period. This trend was observed across all surveyed regions where apples and pears were cultivated. Among the weather conditions influencing the blossom infection risk period, rainfall notably affected the activation of pathogens from over-wintering cankers and flower infections. In particular, precipitation during the initial 3 days of the blossom infection risk warning was confirmed as a decisive factor in determining the outbreak's scale.

A Maryblyt Study to Apply Integrated Control of Fire Blight of Pears in Korea (배 화상병 종합적 방제를 위한 Maryblyt 활용 방안 연구)

  • Kyung-Bong, Namkung;Sung-Chul, Yun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.305-317
    • /
    • 2022
  • To investigate the blossom infection risk of fire blight on pears, the program Maryblyt has been executed from 2018 to 2022 based on meteorological data from central-Korean cities where fire blight has occurred as well as from southern Korean cities where the disease has not yet occurred. In the past five years, years with the highest risk of pear blossom blight were 2022 and 2019. To identify the optimal time for spraying, we studied the spray mode according to the Maryblyt model and recommend spraying streptomycin on the day after a "High" warning and then one day before forecasted precipitation during the blossom period. Maryblyt also recommends to initiate surgical controls from mid-May for canker blight symptoms on pear trees owing to over-wintering canker in Korea. Web-cam pictures from pear orchards at Cheonan, Icheon, Sangju, and Naju during the flowering period of pear trees were used for comparing real data and constructing a phenological model. The actual starting dates of flowering at southern cities such as Sangju and Naju were consistently earlier than those calculated by the model. It is thus necessary to improve the forecasting model to include field risks by recording the actual flowering period and the first day of the fire blight symptoms, according to the farmers, as well as mist or dew-fall, which are not easily identifiable from meteorological records.

In Vitro Screening of Antibacterial Agents for Suppression of Fire Blight Disease in Korea (기내 검정법을 이용한 국내 과수 화상병 방제제 선발)

  • Lee, Min Su;Lee, Ingyeong;Kim, Sam Kyu;Oh, Chang-Sik;Park, Duck Hwan
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Since fire blight disease on apple and pear was produced in Korea in 2015, there were no registered chemicals to control against this disease. Instead, several antibacterial chemicals that were registered for other bacterial diseases such as soft rot and bacterial spot have been authorized by Rural Development Administration (RDA). However, these chemicals are not tested efficacy for fire blight disease except damage by those treatments on apple and pear in Korea. Thus, we evaluated efficiency using in vitro and in planta assays of antibacterial chemicals such as antibiotics and copper compounds including kasugamycin, oxytetracycline, oxolinic acid and streptomycin, and copper hydroxide, copper sulfate, oxine copper and tribasic copper sulfate, respectively. We also tested two kinds of biological agents. As expected, significant antibacterial effect was observed in vitro test of both antibiotics and copper-based chemicals. In planta test based on disease severity including ooze and water-soaked formation on immature pears, bacterial populations on blooms, and blight lesion formation in artificially inoculated shoots, kasugamycin, oxytetracycline and streptomycin have been shown the most efficiency among tested antibiotics. Four copper-based chemicals tested in this study, control effects are little bit lower than agricultural antibiotics but they seem to be available to use in terms of winter season. Biocontrol agents were also shown possibility to treat in eco-friendly farms. In addition, there are no antibiotic resistance genes in Korean isolates against antibiotics, which were selected for suppression of fire blight in this study.

MARYBLYT Study for Potential Spread and Prediction of Future Infection Risk of Fire Blight on Blossom of Singo Pear in Korea (우리나라 신고배 화상병 꽃감염 확산 가능성 및 미래 감염위험 예측을 위한 MARYBLYT 연구)

  • Kim, Min-Sun;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.182-192
    • /
    • 2018
  • Since fire blight (Erwinia amylovora) firstly broke out at mid-Korea in 2015, it is necessary to investigate potential spread of the invasive pathogen. To speculate environmental factors of fireblight epidemic based on disease triangle, a fire blight predicting program, MARYBLYT, was run with the measured meteorological data in 2014-2017 and the projecting future data under RCP8.5 scenario for 2020-2100. After calculating blossom period of Singo pear from phenology, MARYBLYT was run for blossom blight during the blossom period. MARYBLYT warned "Infection" blossom blight in 2014-15 at Anseong and Cheonan as well as Pyungtak and Asan. In addition, it warned "Infection" in 2016-17 at Naju. More than 80% of Korean areas were covered "Infection" or "High", therefore Korea was suitable for fire blight recently. Blossom blight for 2020-2100 was predicted to be highly fluctuate depending on the year. For 80 years of the future, 20 years were serious with "Infection" covered more than 50% of areas in Korea, whereas 8 years were not serious covered less than 10%. By comparisons between 50% and 10% of the year, temperature and amount of precipitation were significantly different. The results of this study are informative for policy makers to manage the alien pathogen.

Investigating Survival of Erwinia amylovora from Fire Blight-Diseased Apple and Pear Trees Buried in Soil as Control Measure (토양에 매몰 방제된 화상병 감염 사과와 배 나무로부터 화상병균 생존 조사)

  • Kim, Ye Eun;Kim, Jun Young;Noh, Hyeong Jin;Lee, Dong Hyeung;Kim, Su San;Kim, Seong Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.269-272
    • /
    • 2019
  • BACKGROUND: Since 2015, fire blight disease caused by Erwinia amylovora has been devastating apple and pear orchards every year. To quickly block the disease spreading, infected apple and pear trees have been buried in soil. However, concern on the possibility of the pathogen survival urgently requires informative data on the buried host plants. Therefore, this study was conducted to investigate the survival of the pathogen from the buried host plants. METHODS AND RESULTS: Apple trees buried in 42 months ago in a Jecheon site and pear trees buried in 30 months ago in an Anseong site were excavated using an excavator. Plant samples were taken from stems and twigs of the excavated trees. The collected 120 samples were checked for rotting and used for bacterial isolation, using TSA, R2A, and E. amylovora selection media. The purely isolated bacteria were identified based on colony morphology and 16S rDNA sequences. Wood rotting and decay with off smells and discoloring were observed from the samples. A total of 17 genera and 48 species of bacteria were identified but E. amylovora was not detected. CONCLUSION: Our investigation suggests that the survival of E. amylovora doesn't seem possible in the infected hosts which have been buried in soil for at least 30 months. Therefore, the burial control can be considered as a safe method for fire blight disease.

Copper-Based Compounds against Erwinia amylovora: Response Parameter Analysis and Suppression of Fire Blight in Apple

  • Duck Kyu, Ryu;Mahesh, Adhikari;Dong Hyuk, Choi;Kyung Jin, Jun;Do Hyoung, Kim;Chae Ryeong, Kim;Min Kyu, Kang;Duck Hwan, Park
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.52-61
    • /
    • 2023
  • Fire blight, caused by Erwinia amylovora, is one of the major bacterial disease of apple and pear, causing enormous economic losses worldwide. Several control measures against E. amylovora have been reported till date, however, none of them have proved to be effective significantly against the pathogen. In this study, mechanisms of the copper-based control agents (CBCAs): copper oxychloride (COCHL), copper oxide (COX), copper hydroxide (CHY), copper sulfate basic (CSB), and tribasic copper sulfate (TCS) and their disease severity reduction efficacy against E. amylovora were analyzed. Bis-1,3-dibutylbarbituric acid trimethine oxonol, carboxyl fluorescein diacetate succinimidyl ester, and 5-cyano-2,3-ditolyl tetrazolium chloride staining were used to check the damage of membrane potential, cytoplasmic pHin, and respiration of CBCAs-treated E. amylovora, respectively. High disturbance in the membrane potential of E. amylovora was found under COX and COCHL treatments. Similarly, higher significant changes in the inner cytoplasmic pHin were observed under COX, COCHL, and TCS treatment. CHY and COCHL-treated E. amylovora showed a significant reduction in respiration. In vitro bioassay results revealed that CHY, CSB, and TCS at 2,000 ppm reduced the severity of fire blight both in pre- and post-treatment of CBCAs in immature apple fruits and seedlings. Overall, the most effective CBCAs against E. amylovora could be CHY at 2,000 ppm as its showed inhibition mechanisms and disease severity reduction.

Induction on in vitro Plant Regeneration the Apple Rootstocks of Fire Blight Resistance by Plant Growth Regulators (생장조절제 처리에 따른 과수화상벙 저항성 사과대목의 기내 식물체 유도)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim;Yong Sup Song
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.23-23
    • /
    • 2021
  • Apple (Malus×domestica Borkh.; Rosaceae) is an important fruit crop grown mainly in temperate regions of the world. Tissue culture in vitro is a biotechnological technique that has been used to genetically improve cultivars (scions) and rootstocks. This could be important in the production of genetically uniform scions and rootstocks for commercial apple production. In nurseries, apple plants are produced by grafting scions onto rootstocks. The Cornell-Geneva (Geneva® series) breeding program has bred several dwarf rootstocks that are resistant to diseases and pests and are also cold hardy. This study was conducted to determine the optimal medium strength to improve sprouting shoot rate of apical meristem of the apple rootstocks of fire blight resistance. The apple rootstocks apical meristem at size (0.2 mm to 0.3 mm) with axillary buds were cultured on the MS(Murashige & Skoog) medium supplemented with plant growth regulators. The sprouting ratio and growth characteristics was evaluated after eight weeks in vitro culture. The highest rate of bud differentiation and shoot formation were 23.8% and 55.6%, respectively. After 6 weeks, shoots were regenerated from apical meristem, and their growth characteristics was significantly varied on the respective basal medium with different plant growth regulators. Our studies showed that the apple rootstocks the apple rootstocks of fire blight resistance plantlets could be successfully produced from apical meristem differentiated out of young twigs via organogenic regeneration.

  • PDF