DOI QR코드

DOI QR Code

Copper-Based Compounds against Erwinia amylovora: Response Parameter Analysis and Suppression of Fire Blight in Apple

  • Duck Kyu, Ryu (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Mahesh, Adhikari (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University) ;
  • Dong Hyuk, Choi (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kyung Jin, Jun (Crop Protection R&D Center, Farmhannong Ltd.) ;
  • Do Hyoung, Kim (Crop Protection R&D Center, Farmhannong Ltd.) ;
  • Chae Ryeong, Kim (Crop Protection R&D Center, Farmhannong Ltd.) ;
  • Min Kyu, Kang (Crop Protection R&D Center, Farmhannong Ltd.) ;
  • Duck Hwan, Park (Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • Received : 2022.07.24
  • Accepted : 2022.11.23
  • Published : 2023.02.01

Abstract

Fire blight, caused by Erwinia amylovora, is one of the major bacterial disease of apple and pear, causing enormous economic losses worldwide. Several control measures against E. amylovora have been reported till date, however, none of them have proved to be effective significantly against the pathogen. In this study, mechanisms of the copper-based control agents (CBCAs): copper oxychloride (COCHL), copper oxide (COX), copper hydroxide (CHY), copper sulfate basic (CSB), and tribasic copper sulfate (TCS) and their disease severity reduction efficacy against E. amylovora were analyzed. Bis-1,3-dibutylbarbituric acid trimethine oxonol, carboxyl fluorescein diacetate succinimidyl ester, and 5-cyano-2,3-ditolyl tetrazolium chloride staining were used to check the damage of membrane potential, cytoplasmic pHin, and respiration of CBCAs-treated E. amylovora, respectively. High disturbance in the membrane potential of E. amylovora was found under COX and COCHL treatments. Similarly, higher significant changes in the inner cytoplasmic pHin were observed under COX, COCHL, and TCS treatment. CHY and COCHL-treated E. amylovora showed a significant reduction in respiration. In vitro bioassay results revealed that CHY, CSB, and TCS at 2,000 ppm reduced the severity of fire blight both in pre- and post-treatment of CBCAs in immature apple fruits and seedlings. Overall, the most effective CBCAs against E. amylovora could be CHY at 2,000 ppm as its showed inhibition mechanisms and disease severity reduction.

Keywords

Acknowledgement

This work was carried out with the support of Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 320041-05-3-SB010) and was also supported by a grant from Farmhannong.

References

  1. Acimovic, S. G. and Meredith, C. L. 2017. Evaluation of dormant copper sprays with bark penetrating surfactants in reduction of Erwinia amylovora in cankers and of low-rate copper sprays in blossom blight control. Fruit Q. 25:15-20.
  2. Acimovic, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W. and Wise, J. C. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesisrelated protein genes. Front. Plant Sci. 6:16.
  3. Belkova, N. L., Tazaki, K., Zakharova, J. R. and Parfenova, V. V. 2007. Activity of bacteria in water of hot springs from Southern and Central Kamchatskaya geothermal provinces, Kamchatka Peninsula, Russia. Microbiol. Res. 162:99-107. https://doi.org/10.1016/j.micres.2006.01.006
  4. Breeuwer, P., Drocourt, J., Rombouts, F. M. and Abee, T. 1996. A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl. Environ. Microbiol. 62:178-183. https://doi.org/10.1128/aem.62.1.178-183.1996
  5. Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O'Mahony, J. and Coffey, A. 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8:34.
  6. Chitarra, L. G., Breeuwer, P., Van Den Bulk, R. W. and Abee, T. 2000. Rapid fluorescence assessment of intracellular pH as a viability indicator of Clavibacter michiganensis subsp. michiganensis. J. Appl. Microbiol. 88:809-816. https://doi.org/10.1046/j.1365-2672.2000.01014.x
  7. Creach, V., Baudoux, A. C., Bertru, G. and Rouzic, B. L. 2003. Direct estimate of active bacteria: CTC use and limitations. J. Microbiol. Methods 52:19-28. https://doi.org/10.1016/S0167-7012(02)00128-8
  8. Dastidar, S. G., Ganguly, K., Chaudhuri, K. and Chakrabarty, A. N. 2000. The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis. Int. J. Antimicrob. Agents 3:249-251. https://doi.org/10.1016/S0924-8579(99)00159-4
  9. Diaz, M., Herrero, M., Garcia, L. A. and Quiros, C. 2010. Application of flow cytometry to industrial microbial bioprocesses. Biochem. Eng. J. 48:385-407. https://doi.org/10.1016/j.bej.2009.07.013
  10. Elkins, R. B., Temple, T. N., Shaffer, C. A., Ingels, C. A., Lindow, S. B., Zoller, B. G. and Johnson, K. B. 2015. Evaluation of dormant-stage inoculum sanitation as a component of a fire blight management program for fresh-market bartlett pear. Plant Dis. 99:1147-1152. https://doi.org/10.1094/PDIS-10-14-1082-RE
  11. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. and Kim, J. O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52:662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  12. Flemming, C. A. and Trevors, J. T. 1989. Copper toxicity and chemistry in the environment: a review. Water Air Soil Poll. 44:143-158. https://doi.org/10.1007/BF00228784
  13. Ghidan, A. Y. and Al Antary, T. M. A. 2019. Applications of nanotechnology in agriculture. In: Applications of nano biotechnology, eds. by M. Stoytcheva and R. Zlatev. IntechOpen, London, UK.
  14. Hindorf, H., Tadesse, M., Pohlan, J., Weeden, O. and Finckh, M. R. 2015. Organic coffee disease management. In: Plant disease and their management in organic agriculture, eds. by M. R. Finckh, A. H. C. van Bruggen and L. Tamm, pp. 367-382. APS Press, St. Paul, MN, USA.
  15. Kennedy, D. and Wilkinson, M. G. 2017. Application of flow cytometry to the detection of pathogenic bacteria. Curr. Issues Mol. Biol. 23:21-38. https://doi.org/10.21775/cimb.023.021
  16. Kobayashi, T., Mito, T., Watanabe, N., Suzuki, T., Shiraishi, A. and Ohashi, Y. 2012. Use of 5-cyano-2,3-ditolyl-tetrazolium chloride staining as an indicator of biocidal activity in a rapid assay for anti-Acanthamoeba agents. J. Clin. Microbiol. 5:1606-1612. https://doi.org/10.1128/JCM.06461-11
  17. Lamichhane, J. R., Osdaghi, E., Behlau, F., Kohl, J., Jones, J. B. and Aubertot, J.-N. 2018. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 38:28.
  18. Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 23:41-51 (in Korean). https://doi.org/10.5423/RPD.2018.24.1.41
  19. Lee, W., Kim, K. J. and Lee, D. G. 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27:1191-1201. https://doi.org/10.1007/s10534-014-9782-z
  20. McGhee, G. C. and Sundin, G. W. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology 101:192-204. https://doi.org/10.1094/PHYTO-04-10-0128
  21. McManus, P. D. 2014. Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants. Curr. Opin. Microbiol. 19:76-82. https://doi.org/10.1016/j.mib.2014.05.013
  22. Myung, I.-S. Lee, J.-Y., Yun, M.-J., Lee, Y.-H., Park, D.-H. and Oh, C.-S. 2016. Fire blight of apple caused by Erwinia amylovora, a new disease in Korea. Plant Dis. 100:1774.
  23. Olsen, E. R. 1993. Influence of pH on bacterial gene expression. Mol. Microbiol. 8:5-14. https://doi.org/10.1111/j.1365-2958.1993.tb01198.x
  24. O'Neil, R. J., Yaninek, J. S., Landis, D. A. and Orr, D. B. 2003. Biological control and integrated pest management. In: Integrated pest management in the global arena, eds. by K. M. Maredia, D. Dakouo and D. Mota-Sanchez, pp. 19-30. CABI Publishing, Wallingford, UK.
  25. Parish, C. R. 1999. Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol. Cell Biol. 77:499-508. https://doi.org/10.1046/j.1440-1711.1999.00877.x
  26. Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J., Myung, I.-S., Shim, H. S. and OH, C.-S. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946.
  27. Renggli, S., Keck, W., Jenal, U. and Ritz, D. 2013. Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bactericidal antibiotics. J. Biotechnol. 195:4067-4073. https://doi.org/10.1128/JB.00393-13
  28. Rezaeinejad, S. and Ivanov, V. 2011. Heterogeneity of Escherichia coli population by respiratory activity and membrane potential of cells during growth and long-term starvation. Microbiol. Res. 166:129-135. https://doi.org/10.1016/j.micres.2010.01.007
  29. Sanchez, E., Garcia, S. and Heredia, N. 2010. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Appl. Environ. Microbiol. 76:6888-6894. https://doi.org/10.1128/AEM.03052-09
  30. Strauber, H. and Muller, S. 2010. Viability states of bacteria: specific mechanisms of selected probes. Cytometry A 77:623-634. https://doi.org/10.1002/cyto.a.20920
  31. Tracy, B. P., Gaida, S. M. and Papoutsakis, E. T. 2010. Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr. Opin. Biotechnol. 21:85-99. https://doi.org/10.1016/j.copbio.2010.02.006
  32. Ueckert, J., Breeuwer, P., Abee, T., Stephens, P., von Caron, G. N. and ter Steeg, P. F. 1995. Flow cytometry applications in physiological study and detection of foodborne microorganisms. Int. J. Food Microbiol. 28:317-326. https://doi.org/10.1016/0168-1605(95)00066-6
  33. Vincent, M., Duval, R. E., Hartemann, P. and Engels-Deutsch, M. 2018. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 124:1032-1046. https://doi.org/10.1111/jam.13681
  34. Walberg, M., Gaustad, P. and Steen, H. B. 1996. Rapid flow cytometric assessment of mecillinam and ampicillin bacterial susceptibility. J. Antimicrob. Chemother. 37:1063-1075. https://doi.org/10.1093/jac/37.6.1063
  35. Whiteaker, K. L., Gopalakrishnan, S. M., Groebe, D., Shieh, C. C., Warrior, U., Burns, D. J., Coghlan, M. J., Scott, V. E. and Gopalakrishnan, M. 2001. Validation of FLIPR membrane potential dye for high throughput screening of potassium channel modulators. J. Biomol. Screen. 6:305-312. https://doi.org/10.1177/108705710100600504
  36. Wickens, H. J., Pinney, R. J., Mason, D. J. and Gant, V. A. 2000. Flow cytometric investigation of filamentation, membrane patency, and membrane potential in Escherichia coli following ciprofloxacin exposure. Antimicrob Agents Chemother. 44:686-687. https://doi.org/10.1128/AAC.44.3.682-687.2000
  37. Winslow, C. E. A., Broadhurst, J., Buchanan, R. E., Krumwiede, C., Rogers, L. A. and Smith, G. H. 1920. The families and genera of the bacteria: final report of the committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J. Bacteriol. 5:191-229. https://doi.org/10.1128/jb.5.3.191-229.1920
  38. Zhao, Y.-Q, Tian, Y.-L, Wang, L.-M., Geng, G.-M., Zhao, W.- J., Hu, B.-S. and Zhao, Y.-F. 2019. Fire blight disease, a fastapproaching threat to apple and pear production in China. J. Integr. Agric. 18:815-820. https://doi.org/10.1016/S2095-3119(18)62033-7
  39. Zitter, T. A. 2013. How copper sprays work and avoiding phytotoxicity. URL https://enych.cce.cornell.edu/submission.php?id=140&crumb=organic%7Corganic [14 December 2022].