Browse > Article
http://dx.doi.org/10.5532/KJAFM.2022.24.4.305

A Maryblyt Study to Apply Integrated Control of Fire Blight of Pears in Korea  

Kyung-Bong, Namkung (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University)
Sung-Chul, Yun (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.24, no.4, 2022 , pp. 305-317 More about this Journal
Abstract
To investigate the blossom infection risk of fire blight on pears, the program Maryblyt has been executed from 2018 to 2022 based on meteorological data from central-Korean cities where fire blight has occurred as well as from southern Korean cities where the disease has not yet occurred. In the past five years, years with the highest risk of pear blossom blight were 2022 and 2019. To identify the optimal time for spraying, we studied the spray mode according to the Maryblyt model and recommend spraying streptomycin on the day after a "High" warning and then one day before forecasted precipitation during the blossom period. Maryblyt also recommends to initiate surgical controls from mid-May for canker blight symptoms on pear trees owing to over-wintering canker in Korea. Web-cam pictures from pear orchards at Cheonan, Icheon, Sangju, and Naju during the flowering period of pear trees were used for comparing real data and constructing a phenological model. The actual starting dates of flowering at southern cities such as Sangju and Naju were consistently earlier than those calculated by the model. It is thus necessary to improve the forecasting model to include field risks by recording the actual flowering period and the first day of the fire blight symptoms, according to the farmers, as well as mist or dew-fall, which are not easily identifiable from meteorological records.
Keywords
Field risks; Blossom blight; Maryblyt; Phenology; Canker blight;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Ahn, M. I., and S. C. Yun, 2021: Applicantion of the Maryblyt model for the infection of fire blight on apple trees at Chungju, Jecheon, and Eumsung during 2015-2020. Plant Pathology Journal 37, 543-554.   DOI
2 Berger, F., W. Zeller, V. Gutsche, and D. Rossberg, 1996: A new fire bight forecasting system with first results in southwest Germany. Acta Horticulturae 411, 155-161.   DOI
3 Billing, E., 2000: Fire blight risk assessment systems and models. In Fire blight: the disease and its causative agent, Erwinia amylovora, ed. J. L. Vanneste, pp. 293-318. CABI Publishing. Wallingford, UK.
4 Decker, T., 1996: Fire blight control under temperate zone climatology. Acta Horticulture 411, 173-175.
5 Gent, D. H., W. F. Mahaffee, N. McRoberts, and W. F. Pfender, 2013: The use and role of predictive systems in disease management. Annual Review of Phytopathology 51, 267-289.   DOI
6 Guo, L., J. Dai, M. Wang, J. Xu, and E. Luedeling, 2015: Responses of spring phenology in temperate zone trees to climate warming: a case study apricot flowering in China. Agriculture and Forest Meteorology 201, 1-7.
7 Ham, H., Y.-K. Lee, H. G. Kong, S. J. Hong, K. J. Lee, G.-R. Oh, M.-H. Lee, and Y. H. Lee, 2020a: Outbreak of fire blight of apple and asian pear in 2015-2019. Research in Plant Disease 26, 222-228. (in Korean with English abstract)   DOI
8 Ham, H., K. J. Lee, S. J. Hong, H. G. Kong, M.-H. Lee, H.-R. Kim, and Y. H. Lee, 2020b: Outbreak of fire blight of apple and pear and its characteristics in Korea in 2019. Research in Plant Disease 26, 239-249. (in Korean with English abstract)   DOI
9 Kharadi, R. R., J. K. Schachterle, X. Yuan, L. F. Castiblanco, J. Peng, S. M. Slack, Q. Zeng, and G. W. Sundin, 2021: Genetic dissection of the Erwinia amylovora disease cycle. Annual Review of Phytopathology 59, 8.1-8.22.
10 Kim, D. J., and J. H. Kim, 2018: An outlook of changes in the flowering dates and low temperature after flowering under the RCP8.5 projected climate condition. Korean Journal of Agricultural and Forest Meteorology 20, 313-320. (in Korean with English abstract)   DOI
11 Kim, J. H., D. J. Kim, S. O. Kim, E. J. Yun, O. Ju, J. S. Park, and Y. S. Shin, 2019: Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring. Korean Journal of Agricultural and Forest Meteorology 21, 55-64. (in Korean with English abstract)   DOI
12 Kim, J. H., E. J. Lee, and J. I. Yun, 2013: Prediction of blooming dates of spring flowers by using digital temperature forecasts and phenology model. Korean Journal of Agricultural and Forest Meteorology 15, 40-49. (in Korean with English abstract)   DOI
13 Kim, J.-H., E.-J. Yun, D.-J. Kim, D. G. Kang, B. H. Seo, and K.-M. Shim, 2020: Evaluation of regional flowering phenological models in niitaka pear by temperature patterns. Korean Journal of Agricultural and Forest Meteorology 22, 268-278. (in Korean with English abstract)   DOI
14 Kim, M.-S., and S.-C. Yun, 2018: MARYBLYT study for potential spread and prediction of future infection risk of fire blight on blossom of singo pear in Korea. Research in Plant Disease 24, 182-192. (in Korean with English abstract)   DOI
15 Kim, Y. E., J. Y. Kim, H. J. Noh, D. H. Lee, S. S. Kim, and S. H. Kim, 2019: Investigation survival of Erwinia amylovora from fire blight-diseased apple and pear trees buried in soil as control measure. Korean Journal of Environment and Agriculture 38, 269-272. (in Korean with English abstract)   DOI
16 Steiner, P. W. 1990: Predicting apple blossom infections by Erwinia amylovora using the MARYBLYT model. Acta Horticulturae 273, 139-148.   DOI
17 Lightner, G. W., and P. W. Steiner, 1993: An update on version 4.1 of MARYBLYT computer program for predicting fire blight. Acta Horticulturae 338, 131-136.   DOI
18 Park, D. H., J. G. Yu, E. J. Oh, K. S. Han, M. C. Yea, S. J. Lee, I. S. Myung, H. S. Shim, and C. S. Oh, 2016: First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Disease 100, 1946.
19 Slack, S. M. and G. W. Sundin, 2017: News on ooze, the fire blight spreader. Fruit Quarterly 25, 9-12.
20 Steiner, P. W. 2000: Integrated orchard and nursery management for the control of fire blight. In Fire blight: the disease and its causative agent, Erwinia amylovora, ed. J. L. Vanneste, pp. 339-358. CABI Publishing. Wallingford, UK.
21 Thomson, S. V. 1986: The role of the stigma in fire blight infection. Phytopathology 76, 476-482.   DOI
22 Thomson, S. V. 1992: Dissemination of bacteria antagonistic to Erwinia amylovora by honey bees. Plant Disease 76, 1052-1056.   DOI
23 Thomson, S. V. 2000: Epidemiology of fire blight. In Fire blight: the disease and its causative agent, Erwinia amylovora, ed. J. L. Vanneste, pp. 9-36. CABI Publishing. Wallingford, UK.
24 Timmermans, Y. 1990: A warning system for fire blight on pears in Belgium: preliminary model and practical prospects. Acta Horticulturae 273, 121-127.   DOI
25 Turechek, W. W. and A. R. Biggs, 2015: Maryblyt v. 7.1 for Windows: an improved fire blight forecasting program for apples and pears. Plant Health Progress 16, 16-22.   DOI
26 Wallis, A., J. Carroll, and K. Cox, 2020: Fire blight. Cornell University and the New York State IPM Program. ecommons.cornell.edu/handle/1813/41246
27 Yang, H. J., M. I. Ahn, S. C. Yun, K. B. NamKung, S. K. Kim, E. W. Park, and Y. K. Han. 2022: Prediction and comparative study on the fire blight infection risk using the K-Maryblyt model for 2020-2022 in Korea. 24th conference on agriculture and forest meteorology.