• Title/Summary/Keyword: Finite operator

Search Result 214, Processing Time 0.04 seconds

Free Oscillation Analysis in the Coastal Area using Integrated Finite Difference Method (적분차분법을 이용한 연안역에서의 해수고유진동해석)

  • LEE Byung-Gul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.782-786
    • /
    • 1994
  • Integrated finite difference method (IFDM) is used to solve one dimensional free oscillation problem in the coastal area. To evaluate the solution accuracy of IFDM in free oscillation analysis, two finite difference equations based on area discretization method and point discretization method are derived from the governing equations of free oscillation, respectively. The difference equations are transformed into a generalized eigenvalue problem, respectively. A numerical example is presented, for which the analytical solution is available, for comparing IFDM to conventional finite difference equation (CFDM), qualitatively. The eigenvalue matrices are solved by sub-space iteration method. The numerical results of the two methods are in good agreement with analytical ones, however, IFDM yields better solution than CFDM in lower modes because IFDM only includes first order differential operator in finite difference equation by Green's theorem. From these results, it is concluded that IFDM is useful for the free oscillation analysis in the coastal area.

  • PDF

Column ranks and their preservers of general boolean matrices

  • Song, Seok-Zun;Lee, Sang-Gu
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.531-540
    • /
    • 1995
  • There is much literature on the study of matrices over a finite Boolean algebra. But many results in Boolean matrix theory are stated only for binary Boolean matrices. This is due in part to a semiring isomorphism between the matrices over the Boolean algebra of subsets of a k element set and the k tuples of binary Boolean matrices. This isomorphism allows many questions concerning matrices over an arbitrary finite Boolean algebra to be answered using the binary Boolean case. However there are interesting results about the general (i.e. nonbinary) Boolean matrices that have not been mentioned and they differ somwhat from the binary case.

  • PDF

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF

A Cyclic Subnormal Completion of Complex Data

  • Jung, Il Bong;Li, Chunji;Park, Sun Hyun
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • For a finite subset ${\Lambda}$ of $\mathbb{N}_0{\times}\mathbb{N}_0$, where $\mathbb{N}_0$ is the set of nonnegative integers, we say that a complex data ${\gamma}_{\Lambda}:=\{{\gamma}_{ij}\}_{(ij){\in}{\Lambda}}$ in the unit disc $\mathbf{D}$ of complex numbers has a cyclic subnormal completion if there exists a Hilbert space $\mathcal{H}$ and a cyclic subnormal operator S on $\mathcal{H}$ with a unit cyclic vector $x_0{\in}\mathcal{H}$ such that ${\langle}S^{*i}S^jx_0,x_0{\rangle}={\gamma}_{ij}$ for all $i,j{\in}\mathbb{N}_0$. In this note, we obtain some sufficient conditions for a cyclic subnormal completion of ${\gamma}_{\Lambda}$, where ${\Lambda}$ is a finite subset of $\mathbb{N}_0{\times}\mathbb{N}_0$.

ACCURATE AND EFFICIENT COMPUTATIONS FOR THE GREEKS OF EUROPEAN MULTI-ASSET OPTIONS

  • Lee, Seunggyu;Li, Yibao;Choi, Yongho;Hwang, Hyoungseok;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2014
  • This paper presents accurate and efficient numerical methods for calculating the sensitivities of two-asset European options, the Greeks. The Greeks are important financial instruments in management of economic value at risk due to changing market conditions. The option pricing model is based on the Black-Scholes partial differential equation. The model is discretized by using a finite difference method and resulting discrete equations are solved by means of an operator splitting method. For Delta, Gamma, and Theta, we investigate the effect of high-order discretizations. For Rho and Vega, we develop an accurate and robust automatic algorithm for finding an optimal value. A cash-or-nothing option is taken to demonstrate the performance of the proposed algorithm for calculating the Greeks. The results show that the new treatment gives automatic and robust calculations for the Greeks.

A NOTE ON ZEROS OF BOUNDED HOLOMORPHIC FUNCTIONS IN WEAKLY PSEUDOCONVEX DOMAINS IN ℂ2

  • Ha, Ly Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.993-1002
    • /
    • 2017
  • Let ${\Omega}$ be a bounded, uniformly totally pseudoconvex domain in ${\mathbb{C}}^2$ with the smooth boundary b${\Omega}$. Assuming that ${\Omega}$ satisfies the negative ${\bar{\partial}}$ property. Let M be a positive, finite area divisor of ${\Omega}$. In this paper, we will prove that: if ${\Omega}$ admits a maximal type F and the ${\check{C}}eck$ cohomology class of the second order vanishes in ${\Omega}$, there is a bounded holomorphic function in ${\Omega}$ such that its zero set is M. The proof is based on the method given by Shaw [27].

TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS

  • Kim, Dongho;Park, Eun-Jae;Seo, Boyoon
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.267-288
    • /
    • 2014
  • We propose and analyze two-scale product approximation for semilinear heat equations in the mixed finite element method. In order to efficiently resolve nonlinear algebraic equations resulting from the mixed method for semilinear parabolic problems, we treat the nonlinear terms using some interpolation operator and exploit a two-scale grid algorithm. With this scheme, the nonlinear problem is reduced to a linear problem on a fine scale mesh without losing overall accuracy of the final system. We derive optimal order $L^{\infty}((0, T];L^2({\Omega}))$-error estimates for the relevant variables. Numerical results are presented to support the theory developed in this paper.

Automatic Generation of Quadrilateral Shell Elements on Sculptured Surfaces (자유곡면에서 사각형 쉘요소의 자동생성)

  • Park, S.J.;Chae, S.W.;Koh, B.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.145-153
    • /
    • 1995
  • An algorithm for the automatic generation of quadrilateral shell elements on three-dimensional sculptured surfaces has been developed, which is one of the key issues in the finite element analysis of structures with complex shapes such as automobile structures. Mesh generation on sculptured surfaces is performed in three steps. First a sculptured surface is transformed to a projection plane, on which the loops are subdivided into subloops by using the best split lines, and with the use of 6-node/8-node loop operators and a layer operator, quadrilateral finite elements are constructed on this plane. Finally, the constructed mesh is transformed back to the original sculptured surfaces. The proposed mesh generation scheme is suited for the generation of non-uniform meshes so that it can be effectively used when the desired mesh density is available. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF

Automatic Generation of Shell Elements by Using Chordal Axis Transform in 3D Structures (3 차원 구조물에서 Chordal Axis Transform 을 이용한 쉘 요소망의 자동생성)

  • Son, Jun-Hee;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.700-705
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models have been proposed. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

  • PDF

Some Finite Integrals Involving The Product of Srivastava's Polynomials and A Certain $\bar{H}$-Function with Applications

  • Singh, Yashwant;Garg, Atul
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.165-171
    • /
    • 2008
  • The aim of this paper is to evaluate four finite integrals involving the product of Srivastava's polynomials, a generalized hypergeometric function and $\bar{H}$-function proposed by Inayat Hussian which contains a certain class of Feynman integrals. At the end, we give an application of our main findings by connecting them with the Riemann-Liouville type of fractional integral operator. The results obtained by us are basic in nature and are likely to find useful applications in several fields notably electric networks, probability theory and statistical mechanics.