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ABSTRACT. This paper presents accurate and efficient numerical methods for calculating the
sensitivities of two-asset European options, the Greeks. The Greeks are important financial
instruments in management of economic value at risk due to changing market conditions. The
option pricing model is based on the Black–Scholes partial differential equation. The model is
discretized by using a finite difference method and resulting discrete equations are solved by
means of an operator splitting method. For Delta, Gamma, and Theta, we investigate the effect
of high-order discretizations. For Rho and Vega, we develop an accurate and robust automatic
algorithm for finding an optimal value. A cash-or-nothing option is taken to demonstrate the
performance of the proposed algorithm for calculating the Greeks. The results show that the
new treatment gives automatic and robust calculations for the Greeks.

1. INTRODUCTION

The Greeks, playing key roles in risk management, are the quantities representing the sen-
sitivity of the price of derivatives. The Greeks are also termed the risk sensitivities [1], risk
measures [2] or hedge parameters [3]. The Greeks are important in the hedging of an option
position [4]. Therefore, it is essential to accurately and robustly estimate the Greeks. Although
the Monte Carlo simulation has been widely used to calculate the option values [5, 6], it is very
costly to compute the Greeks accurately and stably. Hence, up to options with two-underlying
assets, it is common practice to use finite difference methods in evaluation the option price and
its Greeks. However, there is no guideline in choosing the increment step sizes for an optimal
calculation of the Greeks in authors’ knowledge.

In this paper, we present accurate and efficient numerical methods for calculating the Greeks
of the sensitivities of two-asset European options and optimal and robust guideline in choosing
the increment step sizes. The model is discretized by using a finite difference method and
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resulting discrete equations are solved by means of an operator splitting (OS) method. For
Delta, Gamma, and Theta, we investigate the effect of high-order discretizations. For Rho and
Vega, we develop an accurate and robust algorithm for finding an optimal value.

The rest of the paper is organized as follows. Section 2 represents the Black–Scholes (BS)
model [7] with two underlying assets. It contains the finite difference discretization for the
BS partial differential equation and a numerical solution algorithm using the operator splitting
method. In Section 3, we present and compare the numerically calculated option Greeks with
the closed-form analytic solutions of cash-or-nothing option. Finally, conclusions are given in
Section 4.

2. THE BLACK–SCHOLES MODEL AND ITS NUMERICAL SOLUTION

We focus on the two-dimensional BS equation
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u(x, y, τ = 0) = Φ(x, y),

where τ = T − t and T is the expiration time. x and y are two underlying asset prices. σ1
and σ2 are volatilities. ρ is the correlation value. r is the risk-free interest rate. Next, we
discretize Eq. (2.1) on a computational domain Ω = (0, L)× (0,M) with a uniform space step
h = L/Nx = M/Ny and a time step ∆τ = T/Nτ , where Nx, Ny, and Nτ are the numbers
of grid points in the x-, y-, and τ -directions, respectively. And then, let unij ≡ u(xi, yj , τ

n) =

u ((i− 0.5)h, (j − 0.5)h, n∆τ) , where i = 1, . . . , Nx, j = 1, . . . , Ny, and n = 0, . . . , Nτ .
Now, we apply an OS method to numerically solve the BS equation. The basic idea of OS
method [8, 9] is to divide each time step into fractional time steps with simpler operators:
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Next, we solve the following two equations:

v
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ij , (2.3)
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with the following linear boundary conditions:

vn0j = 2vn1j − vn2j , v
n
Nx+1,j = 2vnNx,j − vnNx−1,j for j = 1, · · · , Ny,

vni0 = 2vni1 − vni2, v
n
i,Ny+1 = 2vni,Ny

− vni,Ny−1 for i = 1, · · · , Nx.

For more details, see a reference [10].

3. NUMERICAL EXPERIMENTS

In this section, we consider a cash-or-nothing option with two underlying assets in order
to calculate values of the option and the Greeks. We perform numerical tests with two strike
prices K1 = K2 = 100 and Cash K = 10 on a computational domain Ω = [0, 300]× [0, 300]
(see Fig. 1(a) for the initial configuration). Parameters are defined as follows: the risk-free
interest rate r = 0.03, volatilities σ1 = σ2 = 0.3, and correlation ρxy = 0.5. Unless otherwise
stated, we take the spatial step size h = 1, temporal step size ∆τ = 1/365, and T = 0.5 is the
final time.
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FIGURE 1. Cash-or-nothing option: (a) Initial profile and (b) numerical result
at time T = 0.5.

3.1. Convergence test. In this section, we perform a convergence test in order to verify ac-
curacy of OS method which is used in this paper. Note that uij and vij be the values from
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the exact and numerical solutions at (xi, yj), respectively, and we define the root mean square
error (RMSE) as

RMSE =

√√√√ 1

N

∑
(xi,yj)∈Ω0

|uij − vij |2,

where N is the number of grid points on Ω0 = [0.9K1, 1.1K1]× [0.9K2, 1.1K2] (gray region
in Fig. 2).

y
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FIGURE 2. Schematic representation of Ω0 (gray region) on which RMSE is evaluated.

Table 1 shows the RMSE and the convergence rates. We perform this test with a fixed time
step size ∆τ = 2.5 × 10−5 up to the maturity T = 0.5 (see Fig. 1(b) for the numerical
solution). The test result shows that this method has the second order accuracy in space as
shown in Table 1.

TABLE 1. RMSE and convergence rates with various mesh grids when ∆τ =
2.5× 10−5.

Grid 75× 75 150× 150 300× 300 600× 600

RMSE 0.004959 0.001236 0.000310 0.000081
Rate 2.004 1.996 1.931

To show the convergence rate for the temporal discretization, we fix a space step size as
h = 0.125 and choose a set of decreasing time steps ∆τ = 1.25e-2, 6.25e-3, 3.125e-3 and
1.563e-3. Numerical solutions are computed up to time T = 0.5. The RMSE and rates of
convergence are given in Table 2. As expected from the discretization, the first-order accuracy
with respect to time is observed.
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TABLE 2. RMSE and convergence rates with various mesh grids when h = 0.125.

∆τ 0.012500 0.006250 0.003125 0.001563

RMSE 0.015785 0.007834 0.003902 0.001947
Rate 1.012 1.005 1.003

3.2. High order finite difference method for evaluating the Greeks. As a first test, we
study high order finite difference schemes for evaluating the Greeks in order to improve the
accuracy. To measure the accuracy, we use the relative error. The relative error is defined by
eϕ = |(ϕex − ϕ)/ϕex| , where ϕex is the exact solution and ϕ is the numerical solution for
the Greeks. Note that the MATLAB codes for closed-form solutions of the Greeks for the
cash-or-nothing with two asset options are given in Appendix.

3.2.1. Delta (∆). Delta, ∆, is defined as the rate of change of the option price with respect
to changes in the underlying asset’s price. By this definition, we can write Delta by using the
various finite difference discretizations at (xi, yj). For example,
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Note that unij is not a value of the numerical solution, but a value of the closed-form analytic so-
lution. Table 3 shows the computational results from various h values at (xi, yj) = (100, 100).
Here the exact solution of ∆ex

x is 9.106615123758730e-2. Figure 3 shows a plot of h versus the
relative error of ∆x corresponding to the results given in Table 3. As can be seen, the relative
errors of the three mentioned methods are decreased as mesh refined. Compared with the sec-
ond order difference discretizations, the fourth and sixth order ones significantly reduces the
numerical errors. While the similar results, which are obtained by the fourth and sixth order
ones, suggest that we can well calculate the Delta with fourth order discretization.

TABLE 3. Relative error of ∆x with respect to h and ∆ex
x =

9.106615123758730e-2.

HHHHHHerror
h

1 0.5 0.25 0.125 0.0625 0.03125

2nd order 4.776e-4 1.194e-4 2.984e-5 7.459e-6 1.865e-6 4.662e-7
4th order 2.324e-4 5.814e-5 1.454e-5 3.635e-6 9.087e-7 2.272e-7
6th order 2.326e-4 5.816e-5 1.454e-5 3.635e-6 9.087e-7 2.272e-7
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FIGURE 3. Relative error of ∆x with 2nd, 4th, and 6th order schemes.

3.2.2. Gamma (Γ). Gamma, Γ, is defined as the rate of change in the delta with respect to
changes in the underlying asset’s price. That is the second partial derivative of the portfolio
value with respect to each asset price. The various order finite difference discretizations for
Gamma at (xi, yj) are given as
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With various h and Γex
xx = −2.768767058441984e-3, Γex

xy = 4.019764929590845e-3, Table
4 shows the relative errors of Γxx and Γxy. And Fig. 4 shows plots of the relative errors of
Γxx and Γxy. As the result of last section, both fourth and sixth order scheme much reduce
the relative errors, but their results are also similar. These results suggest that fourth order
discretization is a better choice to compute Gamma.

TABLE 4. Relative errors of Γxx and Γxy with various h values and Γex
xx =

−2.768767058441984e-3 and Γex
xy = 4.019764929590845e-3.

HHHHHHerror
h

1 0.5 0.25 0.125 0.0625 0.03125

Γxx

2nd order 2.067e-3 5.172e-4 1.293e-4 3.233e-5 8.083e-6 2.021e-6
4th order 1.355e-3 3.387e-4 8.468e-5 2.117e-5 5.292e-6 1.323e-6
6th order 1.354e-3 3.387e-4 8.467e-5 2.117e-5 5.292e-6 1.323e-6

Γxy

2nd order 1.628e-3 4.075e-4 1.019e-4 2.548e-5 6.369e-6 1.592e-6
4th order 7.011e-4 1.748e-4 4.368e-5 1.092e-5 2.730e-6 6.823e-7
6th order 6.985e-4 1.747e-4 4.367e-5 1.092e-5 2.730e-6 6.823e-7
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FIGURE 4. Relative error of (a) Γxx and (b) Γxy with high order schemes.

3.2.3. Theta (Θ). Theta, Θ, is defined as the rate of change in option prices depending on the
passage of time. Theta is also called time decay of the portfolio, whose numerical discretization
is given as
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TABLE 5. elative error of Θ with respect to ∆τ when (Θ)a =
−2.309767981220711e-1.

PPPPPPPPerror
∆τ

0.1 0.02 0.004 0.0008 0.00016

2nd order 3.157e-3 1.242e-4 4.963e-6 1.985e-7 7.945e-9
4th order 2.437e-4 3.458e-7 5.505e-10 3.628e-13 8.373e-12
6th order 7.033e-5 2.959e-9 4.265e-13 2.421e-13 1.278e-11

In Table 5, we can obtain that the relative error with the 4th order scheme becomes larger
than the 6th order scheme’s one. Also, we can see that the relative error with 4th and 6th order
schemes converges rapidly as ∆τ decreases as shown in Fig. 5. From this result, we can notice
that the 4th order scheme is accurate enough to calculate the Theta and there can be arisen
an error if too small ∆τ is used. Enough smaller ∆τ used will reduce the numerical error in
general, while much smaller ∆τ used will make the relative error increase, due to the round-off
error. Thus, ∆τ should be chosen with care.

3.3. Searching algorithm for optimal increments. Now, we propose a new algorithm for
evaluating the Rho (ρ) and the Vega (ν). To calculate the Rho and the Vega, we need to
choose appropriate sizes of increments ∆r and ∆σ. Too large increments can cause a large
discretization error and too small increments also generate round up errors. Therefore, it is
important to carefully choose the optimal increment values. To determine whether the used
parameter is optimal or not, we use the normalized step difference error Em and it is defined as

Em =

∣∣∣∣ϕm − ϕm−1

ϕm−1

∣∣∣∣ , (3.1)

where m = 2, 3, 4, · · · .
Next, we draw the new algorithm for evaluating Rho and Vega as following steps:

Step 1: Set s = 10, ∆r = r0/s, tol = 1e-8, and m = 2. And we choose a large value
E1 = 100 to hold the |E2 − E1| > tol.

Step 2: Run the simulations with r = r0+∆r and r = r0−∆r and denote their solutions
as u(r0 +∆r0) and u(r0 −∆r0), respectively.
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FIGURE 5. Relative error of Θ with 2nd, 4th, and 6th order difference schemes.

Step 3: Compute Em. If Em > tol and |Em − Em−1| > tol, then ∆r = ∆r/s, m =
m+ 1, and return to step 2. Else stop the simulation.

Step 4: If Em > Em−1, then stop the simulation and set m = m− 1.

It is optional to do Step 3 and 4. Instead of those steps, we can just set the number of iteration
of simulations. To calculate Rho and Vega in next subsections, we omit the optional steps and
simulate with 10−nr, n = 1, 2, 3, 4, 5, 6. Now, we consider tests with our proposed method.

3.3.1. Rho (ρ). Rho, ρ, is defined as the rate of change in option prices when the risk-free
interest rate’s changing. If the risk-free interest rate increases, then call option price also in-
creases. By applying a center difference, Rho is written as follow:

(ρ)nij :=

(
∂u

∂r

)n

ij

=
unij(r +∆r)− unij(r −∆r)

2∆r
+O((∆r)2). (3.2)

In Table 6, it is shown that the normalized step difference error for ρ at underlying asset
(100, 100) and T = 0.5 against the risk-free interest rate’s step size. As the step size is de-
creasing, the normalized error is also decreasing until ∆r = 10−4r. If the step size is less than
10−5r, however, the normalized error becomes increasing. Here, we compute the ρ by using
a set of different r0/sm, i.e., r0/s, r0/s2, . . .. If the normalized error or the change of two
normalized errors is smaller than a given tolerance, i.e., tol for an iteration m, we choose the
step as ∆r = r0/s

m.

3.3.2. Vega (ν). Vega, ν, is defined as the rate of change in option prices for the volatility of
the underlying assets. Since some option values can be sensitive to changes in volatility, vega
has an important role to monitor in volatile markets, especially.
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TABLE 6. Normalized step difference error for ρ (Underlying Asset) =
(100, 100), T = 0.5).

∆r 10−1r 10−2r 10−3r 10−4r 10−5r 10−6r

E 1.134e−5 1.139e−7 8.189e−9 1.263e−8 4.544e−7

(νx)
n
ij :=

(
∂u

∂σ1

)n

ij

=
unij(σ1 +∆σ1)− unij(σ1 −∆σ1)

2∆σ1
+O((∆σ1)

2),
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unij(σ2 +∆σ2)− unij(σ2 −∆σ2)

2∆σ2
+O((∆σ2)

2).

Tables 7 show the normalized error with difference ∆ν. As explained above, it shows similar
result which the error becomes decreasing unless the step size ∆ν is not too small. This result
represents that finding suitable step size is vital for an effective estimation.

TABLE 7. Normalized step difference error for ν (Underlying Asset =
(100, 100), T = 0.5).

∆σ1 10−1σ1 10−2σ1 10−3σ1 10−4σ1 10−5σ1 10−6σ1

E 3.180e−3 3.163e−5 3.164e−7 1.111e−8 6.317e−8

4. CONCLUSION

We presented a computational algorithm for calculating option prices and the Greeks of
a two-asset cash-or-nothing option. The value of the option was modeled by using the BS
partial differential equation and the governing equation was discretized by the finite difference
method. Using the OS method, we could solve the discrete equation efficiently. Since a cash-
or-nothing option has closed-form solutions for the option price and the Greeks, the exact and
numerical values were compared. We described further details on the process and numerical
results demonstrating the accuracy and robustness of our proposed algorithm. From the results,
we investigated that there is the proper high order scheme to evaluate the Greeks and found an
optimal guideline to choose a suitable increment. The proposed algorithm is general, therefore,
it can be applied to other options. As future research, we will investigate barrier and equity-
linked securities (ELS) options using the proposed scheme.
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5. APPENDIX

The exact formula for the option price given in [11, 12] is as follows:

u(x, y, τ) = Ke−rτM(α, β; ρxy), (5.1)

where α =
ln (x/K1)+(r−σ2

1/2)τ

σ1
√
τ

, β =
ln (y/K2)+(r−σ2

2/2)τ

σ2
√
τ

, and M(α, β; ρxy) is a standardized
cumulative normal function with the correlation ρxy
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2π
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e
− ξ2−2ρxyξη+η2
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%%%%%%%%%% Option value %%%%%%%%%%
clear;tau=0.5;K1=100;K2=100;K=10;r=0.03;sig1=0.3;sig2=0.3;rho=0.5;x=100;y=100;
alpha=(log(x/K1)+(r-sig1ˆ2/2)*tau)/(sig1*sqrt(tau));
beta=(log(y/K2)+(r-sig2ˆ2/2)*tau)/(sig2*sqrt(tau));
u=K*exp(-r*tau)*mvncdf([alpha beta],[0 0],[1 rho;rho 1])

Now, we find the explicit Greek formulas by differentiating Eq. (5.1).

∆x =
∂u

∂x
=

Ke−rτ

2πxσ1
√
τ
√

1− ρ2xy

∫ β

−∞
e
−α2−2ρxyαη+η2

2(1−ρ2xy) dη, (5.2)

∆y =
∂u

∂y
=

Ke−rτ

2πyσ2
√
τ
√
1− ρ2xy

∫ α

−∞
e
− ξ2−2ρxyξβ+β2

2(1−ρ2xy) dξ. (5.3)

%%%%%%%%%%%%%% Delta %%%%%%%%%%%%%%
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delta2=K*exp(-r*tau-0.5*betaˆ2)/(sqrt(2*pi)*y*sig2*sqrt(tau)) ...

*normcdf(alpha,rho*beta,sqrt(1-rhoˆ2))

Γxx =
∂2u

∂x2
=

Ke−rτ

2πx2σ1
√
τ
√

1− ρ2xy

∫ β

−∞

(
ρxyη − α

σ1
√
τ(1− ρ2xy)

− 1

)
e
−α2−2ρxyαη+η2

2(1−ρ2xy) dη,

Γyy =
∂2u

∂y2
=

Ke−rτ

2πy2σ2
√
τ
√

1− ρ2xy

∫ α

−∞

(
ρxyξ − β

σ2
√
τ(1− ρ2xy)

− 1

)
e
− ξ2−2ρxyξβ+β2

2(1−ρ2xy) dξ,

Γxy =
∂2u

∂x∂y
=

Ke−rτ

2πxyσ1σ2τ
√

1− ρ2xy

e
−β2−2ρxyβα+α2

2(1−ρ2xy) .
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%%%%%%%%%%%%%% Gamma %%%%%%%%%%%%%%
clear; tau=0.5;K1=100;K2=100;K=10;r=0.03;sig1=0.3;sig2=0.3;rho=0.5;x=100;y=100;
alpha=(log(x/K1)+(r-sig1ˆ2/2)*tau)/(sig1*sqrt(tau));
beta=(log(y/K2)+(r-sig2ˆ2/2)*tau)/(sig2*sqrt(tau));
gamma1=K*exp(-r*tau-0.5*alphaˆ2)/(sqrt(2*pi)*xˆ2*sig1ˆ2*tau) ...

*(-rho*exp(-0.5*(beta-rho*alpha)ˆ2/(1-rhoˆ2))/sqrt(2*pi*(1-rhoˆ2)) ...
+(-alpha-sig1*sqrt(tau))*normcdf(beta,rho*alpha,sqrt(1-rhoˆ2)) )

gamma2=K*exp(-r*tau-0.5*betaˆ2)/(sqrt(2*pi)*yˆ2*sig2ˆ2*tau) ...

*(-rho*exp(-0.5*(alpha-rho*beta)ˆ2/(1-rhoˆ2))/sqrt(2*pi*(1-rhoˆ2)) ...
+(-beta-sig2*sqrt(tau))*normcdf(alpha,rho*beta,sqrt(1-rhoˆ2)) )

gamma3=K*exp(-r*tau)/(2*pi*x*y*sig1*sig2*tau*sqrt(1-rhoˆ2)) ...

*exp(-0.5*(betaˆ2-2*rho*beta*alpha+alphaˆ2)/(1-rhoˆ2))

ρ =
∂u

∂r
=

Ke−rτ

2π
√

1− ρ2xy

{
−τ

∫ α

−∞

∫ β

−∞
e
− ξ2−2ρxyξη+η2

2(1−ρ2xy) dη dξ

+

√
τ

σ1

∫ β

−∞
e
−α2−2ρxyαη+η2

2(1−ρ2xy) dη +

√
τ

σ2

∫ α

−∞
e
− ξ2−2ρxyξβ+β2

2(1−ρ2xy) dξ

}
.

%%%%%%%%%%%%%% Rho %%%%%%%%%%%%%%
clear; tau=0.5;K1=100;K2=100;K=10;r=0.03;sig1=0.3;sig2=0.3;rho=0.5;x=100;y=100;
alpha=(log(x/K1)+(r-sig1ˆ2/2)*tau)/(sig1*sqrt(tau));
beta=(log(y/K2)+(r-sig2ˆ2/2)*tau)/(sig2*sqrt(tau));
rrho=-tau*K*exp(-r*tau)*mvncdf([alpha beta],[0 0],[1 rho; rho 1])...

+sqrt(tau)*K*exp(-r*tau-0.5*alphaˆ2)/(sqrt(2*pi)*sig1)...

*normcdf(beta,rho*alpha,sqrt(1-rhoˆ2)) ...
+sqrt(tau)*K*exp(-r*tau-0.5*betaˆ2)/(sqrt(2*pi)*sig2)...

*normcdf(alpha,rho*beta,sqrt(1-rhoˆ2));

Θ =
∂u

∂t
=

−Ke−rτ

2π
√

1− ρ2xy

{
r

∫ α

−∞

∫ β

−∞
e
− ξ2−2ρxyξη+η2

2(1−ρ2xy) dη dξ

+
ln (x/K1)− (r − σ2

1/2)τ

2σ1τ3/2

∫ β

−∞
e
−α2−2ρxyαη+η2

2(1−ρ2xy) dη

+
ln (y/K2)− (r − σ2

2/2)τ

2σ2τ3/2

∫ α

−∞
e
− ξ2−2ρxyξβ+β2

2(1−ρ2xy) dξ

}
.

%%%%%%%%%%%%%% Theta %%%%%%%%%%%%%%
clear; tau=0.5;K1=100;K2=100;K=10;r=0.03;sig1=0.3;sig2=0.3;rho=0.5;x=100;y=100;
alpha=(log(x/K1)+(r-sig1ˆ2/2)*tau)/(sig1*sqrt(tau));
beta=(log(y/K2)+(r-sig2ˆ2/2)*tau)/(sig2*sqrt(tau));
theta=-r*K*exp(-r*tau)*mvncdf([alpha beta],[0 0],[1 rho; rho 1]) ...

-(log(x/K1)-(r-sig1ˆ2/2)*tau)*K*exp(-r*tau-alphaˆ2/2)/(2*sqrt(2*pi)*sig1 ...

*tauˆ(3/2))*normcdf(beta,rho*alpha,sqrt(1-rhoˆ2)) ...



ACCURATE AND EFFICIENT COMPUTATIONS FOR THE GREEKS 73

-(log(y/K2)-(r-sig2ˆ2/2)*tau)*K*exp(-r*tau-betaˆ2/2)/(2*sqrt(2*pi)*sig2 ...

*tauˆ(3/2))*normcdf(alpha,rho*beta,sqrt(1-rhoˆ2))

νx =
∂u

∂σ1
=

Ke−rτ

2π
√

1− ρ2xy

(
− ln (x/K1) + (r + σ2

1/2)τ

σ2
1

√
τ

)∫ β

−∞
e
−α2−2ρxyαη+η2

2(1−ρ2xy) dη,

νy =
∂u

∂σ2
=

Ke−rτ

2π
√

1− ρ2xy

(
− ln (y/K2) + (r + σ2

2/2)τ

σ2
2

√
τ

)∫ α

−∞
e
− ξ2−2ρxyξβ+β2

2(1−ρ2xy) dξ.

%%%%%%%%%%%%%% Vega %%%%%%%%%%%%%%
clear; tau=0.5;K1=100;K2=100;K=10;r=0.03;sig1=0.3;sig2=0.3;rho=0.5;x=100;y=100;
alpha=(log(x/K1)+(r-sig1ˆ2/2)*tau)/(sig1*sqrt(tau));
beta=(log(y/K2)+(r-sig2ˆ2/2)*tau)/(sig2*sqrt(tau));
vega1=-(log(x/K1)+(r+sig1ˆ2/2)*tau)/(sig1ˆ2*sqrt(tau))*K*exp(-r*tau-alphaˆ2/2) ...

/sqrt(2*pi)*normcdf(beta,rho*alpha,sqrt(1-rhoˆ2))
vega2=-(log(y/K2)+(r+sig2ˆ2/2)*tau)/(sig2ˆ2*sqrt(tau))*K*exp(-r*tau-betaˆ2/2) ...

/sqrt(2*pi)*normcdf(alpha,rho*beta,sqrt(1-rhoˆ2))
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