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Integrated finite difference method (IFDM) is used to solve one dimensional free
oscillation problem in the coastal area. To evaluate the solution accuracy of IFDM in free
oscillation analysis, two finite difference equations based on area discretization method and
point discretization method are derived from the governing equations of free oscillation,
respectively. The difference equations are transformed into a generalized eigenvalue
problem, respectively. A numerical example is presented, for which the analytical solution
is available, for comparing IFDM to conventional finite difference equation (CFDM),
qualitatively. The eigenvalue matrices are solved by sub-space iteration method. The
numerical results of the two methods are in good agreement with analytical ones, however,
IFDM yields better solution than CFDM in lower modes because IFDM only includes first
order differential operator in finite difference equation by Green’s theorem. From these
results, it is concluded that IFDM is useful for the free oscillation analysis in the coastal
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darea.

Introduction

Since solutions of appropriate numerical methods
such as conventional finite difference method and
shooting method, are generally better than analyti-
cal ones in oceanographic works, numerical me-
thods effectively have been applied to free oscilla-
tion problem (Ippen, 1966; Platzman, 1972; Tacker,
1977a, b). Such a case happens particularly in the
problem with complex boundaries and bottom to-
pography (Tacker, 1977a, b, Ippen, 1966).

Of those numerical methods, conventional finite
difference method (iteration or shooting methods)
based on point discretization method is widely used
for the analysis of free oscillation in oceanographic
field (Ippen, 1966; Platzman, 1972 & 1975; Tacker,
1977a, b). However, in finite different method,
point discretization method can be worse than
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area discretization method because the latter is fo-
rmulated by integration procedure.

Dey and Morrison (1979) successfully used inte-
grated finite difference method (IFDM) to calcu-
late potential distribution about a point source loca-
ted in or on the surface of a half-surface with arbi-
trary two-dimensional conductivity distribution in
which IFDM is based on area discretization proce-
dure using Green’s theorem.

This paper presents the applicability of IFDM to
the free oscillation analysis in the coastal area with
variable geometry and bottom topography. To ve-
rify the validity of the method, one dimensional
free oscillation problem with open and closed
boundary conditions is solved using IFDM and its
resultant critically compared to those of CFDM and
the analytical method.
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Governing Equation

According to the shallow water wave theory, the
governing equation for one dimensional free oscil-
lation can be expressed in a domain D as

v - (gHVD) + =0 €))]

where g is the gravitational acceleration, H is the
depth, { the surface displacement, ® the natural
frequency. Two kinds of boundary conditions on
the boundary gD are given as
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where n indicates the outward normal unit vector
at boundaries. The solutions of equation (1) are
composed of eigenvalues @’ and corresponding ei-
genfunctions ¢. Equation (1) and (2) are Neumann
and Dirichlet type boundary conditions, respecti-
vely. We can select other types of boundary condi-
tions according to free oscillation problem. In real
world problem, generally, the former is considered
as open type and the latter is closed type of boun-
dary condition.

If we assume a constant water depth(H) through
the domain, the following relations can be held:

c=\/gH )

2n )
T

where c is the phase velocity and T the natural pe-
riod. However, since H is not constant in real wo-
rld, equation (4) cannot be directly used for the
free oscillation analysis in a coastal area with gene-
ral boundary and bottom topography. Therefore,
numerical methods are pursued to solve the real
world free oscillation problem with irregular bot-
tom topography.

Finite Difference Method

783

We use the integrated finite difference method
(IFDM) proposed by Dey and Morrison (1979) to
solve the free oscillation mode of equation (1). For
deriving an integrated finite difference equation in
a domain D, equation (1) should be rewritten for
a generalized one dimensional space,

S v+ (gHv) +0*1dD=0 (6)

Using Green’s theorem, equation (6) can be
transformed by

foeH Z—Eds+j; @ dD=0 )

subject to boundary condition of equation (2) and
(3). Where D is the domain of model and s is the
boundary line of domain.

Equation (7) is simpler than equation (6) since
the former includes first order derivative only, so
that the numerical errors associated with finite dif-
ference approximation can be decreased.

The finite difference approximation for equation
(1) and (7) satisfying boundary conditon (2) and
(3) can be derived as follows:

conventional finite difference approximation

Ci+1_2<i+Ci“l) + (Hi+l_Hi ) ( §H;_§r)

Hi(
& AY? Ax

+ a)ZC i=0 (8)

integrated finite difference approximation
gH( ALl S} )+ ?AxE =0 (9
Ax

where the subscript i is a node number, H is the
averaged depth of grid space, Ax is the grid size.
As the grid size decreases, depth of the numerical
mode!l approaches to real world depth.

Equations (8) and (9) can be transformed into
a generalized eigenvalue equation. A variety of nu-
merical methods for the solution of generalized al-
gebraic eigenvalue problems are available (Bathe,
1982; Ryu, 1984). Among them the subspace itera-
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tion method is ¢ iitable for the partial eigensolution
of large scale problems such as equations (8) and
(9) (Ryu, 1984).

Numerical Example

To examine the applicability of IFDM, we adopt
one dimensional oscillation model, for which an
analytical solution is available, It is a domain of co-
ntinental shelf type with length scale of 50km
where the water depth increases lineary maximun
depth of 200m like Fig. 1.

open ocean
200 m

Fig. 1.

Domain and boundary of numerical model.

The analytical solution of the model can be deri-
ved as Bessel function of order zero (Lim, 1992),
Le.

¢(x) =Jo(k,) (10)
k,=2w ,/xL/gH

where Jo is the Bessel function, L the total length
of domain, x the horizontal coordinate value and n
the mode number. The lowest eigenmode of equa-
tion (10) based on boundary conditions of equa-
tions (2) and (3) can be solved as
Jo(ka) =0 (1D
ki23.=2.40482, 552007, 8.65372

To compute numerical solutions of the example
using equations (8) and (9), the model domain is
discretized as 101 nodes and 100 grids. Therefore,
the size of matrices and consequently the number
of eigensolutions must be 100 since Dirichlet type
boundary condition of equation (3) is included.

Using the finite difference superposition proce-

dure, equation (7) and (8) for the whole domain
and boundary can be written as the generalized ei-
genvalue equation as follows:

Ax=2Bx (12)
where A is the eigenvalue that equals w®. The mat-
rices A and B in equation (12) satisfy the positive-
definite condition since it contains Derichlet type
boundary condition of equation (3).

Analytical and numerical solutions for a few low-
est modes are presented in Table 1 and Fig. 2.
Numerical solutions of natural frequencies are
shown to have reasonable accuracy compared with
the analytical ones as shown in Table 1. Corres-

" ponding numerical eigenvectors associated with the

same eigenvalues show a good agreement with
analytical ones in Fig. 2. The eigenfunctions of
CFDM and of analytic method in higher mode is
a little difference comparing ones of IFDM. Solu-
tions of IFDM show better than ones of CFDM in
the lowest modes 1, 2 and 3 which are the most
important modes in free oscillation. Therefore, the
accuracy of the IFDM is verified qualitatively, so
that IFDM is very useful for the free oscillation
analysis in a coastal area.
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Fig. 2. Comparison of eigenfunctions of the numerical
and the analytical methods where 1, 2, 3, 4
and 5 are free oscillation mode number.
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Tabel 1. Eigenvalues (w, sec™") of numerical model

Mode Finite Difference Method Analytic
IFDM CFDM Method

1 0.001064 0.001062 0.001064

2 0.002443 0.002439 0.002443
3 0.003825 0.003823 0.003831
4 0.005208 0.005200 0.005220
5 0.006552 0.006595 0.006610

Summary And Conclusion

For the verification of validity and applicability of
the IFDM proposed by Dey and Morrison (1976),
one dimensional free oscillation problem in a coas-
tal area with a variable bottom topography is sol-
ved. Two finite difference equations are derived
from the governing equation using area discretiza-
tion method and point finite difference method
(conventional finite difference method (CFDM)).
Green’s theorem, very useful to improve the nu-
merical accuracy of integral equation, is introduced
in IFDM. The respective difference equations are
transformed into a generalized algebraic eigenvalue
problem. A numerical model of one dimensional
free oscillation is solved, for which the analytical
solution is available. The results prove that the so-
lutions obtained by IFDM are better than those by
CFDM. Therefore, IFDM is a very reasonable nu-
merical scheme for the application to free oscilla-
tion problem.

It is concluded that the usability of integrated fi-
nite different method for the practical analysis of
free oscillation with general boundary and bottom
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topography in a coastal area can be applied.
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