• Title/Summary/Keyword: Finite groups

Search Result 366, Processing Time 0.024 seconds

DECOMPOSITION OF SOME CENTRAL SEPARABLE ALGEBRAS

  • Park, Eun-Mi;Lee, Hei-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • If an Azumaya algebra A is a homomorphic image of a finite group ring RG where G is a direct product of subgroups then A can be decomposed into subalgebras A(sub)i which are homomorphic images of subgroup rings of RG. This result is extended to projective Schur algebras, and in this case behaviors of 2-cocycles will play major role. Moreover considering the situation that A is represented by Azumaya group ring RG, we study relationships between the representing groups for A and A(sub)i.

  • PDF

Smooth structures on symplectic 4-manifolds with finite fundamental groups

  • Cho, Yong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.619-629
    • /
    • 1996
  • In studying smooth 4-manifolds the Donaldson invariant has played a central role. In [D1] Donaldson showed that non-vanishing Donaldson invariant of a smooth closed oriented 4-manifold X gives rise to the indecomposability of X. For instance, the complex algebraic suface X cannot decompose to a connected sum $X_1 #X_2$ with both $b_2^+(X_i) > 0$.

  • PDF

ON IRREDUCIBILITY OF INDUCED MODULES AND AN ADAPTATION OF THE WIGNER-MACKEY METHOD OF LITTLE GROUPS

  • Venkataraman, Geetha
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1213-1222
    • /
    • 2013
  • This paper deals with sufficiency conditions for irreducibility of certain induced modules. We also construct irreducible representations for a group G over a field $\mathbb{K}$ where the group G is a semidirect product of a normal abelian subgroup N and a subgroup H. The main results are proved with the assumption that char $\mathbb{K}$ does not divide |G| but there is no assumption made of $\mathbb{K}$ being algebraically closed.

ON VOISIN'S CONJECTURE FOR ZERO-CYCLES ON HYPERKÄHLER VARIETIES

  • Laterveer, Robert
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1841-1851
    • /
    • 2017
  • Motivated by the Bloch-Beilinson conjectures, Voisin has made a conjecture concerning zero-cycles on self-products of Calabi-Yau varieties. We reformulate Voisin's conjecture in the setting of $hyperk{\ddot{a}}hler$ varieties, and we prove this reformulated conjecture for one family of $hyperk{\ddot{a}}hler$ fourfolds.

COMPLEX SCALING AND GEOMETRIC ANALYSIS OF SEVERAL VARIABLES

  • Kim, Kang-Tae;Krantz, Steven G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.523-561
    • /
    • 2008
  • The purpose of this paper is to survey the use of the important method of scaling in analysis, and particularly in complex analysis. Applications are given to the study of automorophism groups, to canonical kernels, to holomorphic invariants, and to analysis in infinite dimensions. Current research directions are described and future paths indicated.

ON FUZZY DIMENSION OF N-GROUPS WITH DCC ON IDEALS

  • Bhavanari, Satyanarayana;Kuncham, Syam Prasad;Tumurukota, Venkata Pradeep Kumar
    • East Asian mathematical journal
    • /
    • v.21 no.2
    • /
    • pp.205-217
    • /
    • 2005
  • In this paper we consider the fuzzy ideals of N-group G where N is a near-ring. We introduce the concepts: minimal elements, fuzzy linearly independent elements, and fuzzy basis of an N-group G and obtained fundamental related results.

  • PDF

Schur Multipliers and Cohomology of Finite Groups

  • LEE, YEANG-SOO
    • Honam Mathematical Journal
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 1979
  • G를 유한군으로, C를 모든 복소수체로 가정하고, V를 C상에서의 유한차원 벡터공간이라 하자. V상에서의 G의 사영적 표시는, X, $y{\epsilon}G$이고 ${\alpha}:\;G{\times}G{\rightarrow}C$를 Facto set이라 할 때 $T(x)T(y)=T(xy){\alpha}(x,y)$이 되는 함수 $T=\;G{\rightarrow}GL(V)$를 말한다. 본 논문의 목적은 군에 대한 Extension theory를 사용해서, G상의 factor set들의 동치류들은 G의 Second Cohomology group과 동형이라는 것을 증명하는 것이다.

  • PDF

REGULAR GRAPHS AND DISCRETE SUBGROUPS OF PROJECTIVE LINEAR GROUPS

  • Chae, Hi-joon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.87-95
    • /
    • 2019
  • The homothety classes of lattices in a two dimensional vector space over a nonarchimedean local field form a regular tree ${\mathcal{T}}$ of degree q + 1 on which the projective linear group acts naturally where q is the order of the residue field. We show that for any finite regular combinatorial graph of even degree q + 1, there exists a torsion free discrete subgroup ${\Gamma}$ of the projective linear group such that ${\mathcal{T}}/{\Gamma}$ is isomorphic to the graph.

SOME TOPOLOGICAL ASPECTS OF GENERALIZED GROUPS AND PSEUDONORMS ON THEM

  • Zand, Mohammad Reza Ahmadi;Rostami, Salimeh
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.661-669
    • /
    • 2018
  • In this paper, we introduce and study the notion of a pseudonorm on a generalized group. Let G be a topological generalized group and let the family $\{G_x\}_{x{\in}e(G)}$ be locally finite. Then, we show that G is completely regular. Also, some well known results are generalized.