SMOOTH STRUCTURES ON SYMPLECTIC 4-MANIFOLDS WITH FINITE FUNDAMENTAL GROUPS

YONG SEUNG CHO

1. Introduction

In studying smooth 4-manifolds the Donaldson invariant has played a central role. In [D1] Donaldson showed that non-vanishing Donaldson invariant of a smooth closed oriented 4-manifold X gives rise to the indecomposability of X. For instance, the complex algebraic surface X cannot decompose to a connected sum $X_1 \sharp X_2$ with both $b_2^+(X_i) > 0$.

In [W] Witten has shown that such a connected sum has also vanishing Seiberg-Witten invariants. Recently in [W1] Wang showed that Seiberg-Witten invariants vanish for another class of 4-manifolds which are not diffeomorphic to a connected sum of two manifolds with both $b_2^+ > 0$. In this paper we would like to extend the class and study the manifolds which are homeomorphic but not diffeomorphic to each other.

In [W1] and [W2] Wang studied the simply connected Kähler surface \overline{X} with $K_{\overline{X}}^2 > 0$, and free (anti-) holomorphic involutions on \overline{X} where $K_{\overline{X}}$ is the canonical class of \overline{X} . Instead we study the closed symplectic 4-manifolds with finite fundamental groups, and free (anti-) symplectic involutions.

We study the Seiberg-Witten invariants for closed symplectic 4-manifolds. In section 2 we will introduce the Seiberg-Witten invariant on 4-manifolds and its basic properties.

Received May 28, 1996.

¹⁹⁹¹ AMS Subject Classification: 57R55, 57R57, 57N 3.

Key words and phrases: symplectic 4-manifold, Seiberg-Witten invariant, Vanishing theorem involution.

The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, Proj. No. BSRI-96-1424, and GARC-KOSEF.

In Section 3 the followings are shown: If (X,ω) is a closed symplectic 4-manifold, then an involution σ on X is symplectic, anti-symplectic if and only if respectively $\sigma_*J=J\sigma_*$, $\sigma_*J=-J\sigma_*$ for some compatible almost complex structure J. If \overline{X} has a finite fundamental group, $b_2^+(\overline{X})>1$ and σ a free involution, then the quotient $X=\overline{X}/\sigma$ is not diffeomorphic to any connected sum $X_1\sharp X_2$ with both $b_2^+(X_i)>0$. In addition if $b_2^+(\overline{X})>3$ and σ a free anti-symplectic involution, then the quotient manifold $X=\overline{X}/\sigma$ has vanishing Seiberg-Witten invariants.

In Section 4 we showed the followings: If \overline{X} is a closed symplectic 4-manifold with a finite fundamential group and η , σ are two free involutions on \overline{X} , which are symplectic and anti-symplectic, respectively. Then if $b_2^+(\overline{X}) > 3$, then the quotient manifolds $X = \overline{X}/\eta$, $X' = \overline{X}/\sigma$ are not diffeomorphic to each other. If \overline{X} is simply connected, and X is not spin, then X and X' are homeomorphic to each other.

2. Seiberg-Witten Invariants

Let X be a closed oriented 4-manifold with

$$b_2^+(X) = \frac{1}{2}(\text{rank } H_2(X) + \text{sign } (X)) > 1.$$

There is a one-to-one correspondence between the equivalence classes of complex line bundles on X and the second cohomology classes in $H^2(X,\mathbb{Z})$. For each the first Chern class $c_1(L)$ of a complex line bundle L such that $c_1(L) \equiv w_2(X) \mod 2$, there are a pair of U(2) bundles W^{\pm} over X. The bundles W^{\pm} are respectively the (twisted) positive, negative spinor bundles (associated to the line bundle L.). The bundle W^+ (or L) is called a spin^c structure on X.

Let g be a Riemannian metric on X. For each cotangent vector $v \in T^*X$ there is a homomorphism $c(v): W^+ \to W^-$ and $W^- \to W^+$ given $c(v)^2 = -g(v,v)$.

The map c induces the Clifford multiplication

$$\sigma: W^+ \otimes T^*X \to W^- \quad \text{and} \quad c_+: \Lambda^2_+ \otimes C \to End(W^+).$$

Let the adjoint of c_+ be

$$\eta: End(W^+)_0 \to \Lambda_+ \otimes C$$

where $End(W^+)_0$ is the set of traceless endomorphisms of W^+ .

Then a self-adjoint endmorphism is mapped into an imaginary valued form.

For a spin^C structure $W^+ \to X$, let A be a connection on the complex line bundle $L = \det(W^+)$. For a fixed metric on X, the Levi-Civita connection on T^*X with the connection A induces a covariant derivative on W^+ . The covariant derivative is donoted by

$$\nabla_A:\Gamma(W^+)\to\Gamma(W^+\otimes T^*X).$$

The composition of ∇_A and σ defines a Dirac operator

$$\mathcal{D}_A:\Gamma(W^+)\to\Gamma(W^-).$$

To define the Seiberg-Witten monopole equations, we consider a map from the product space of the space $\mathcal{A}(L)$ of connections on L and the space $\Gamma(W^+)$ of sections of W^+ into the product space of the space of self-dual 2-forms and $\Gamma(W^-)$:

$$P: \mathcal{A}(L) \times \Gamma(W^+) \to i\Omega^{2,+}(X) \times \Gamma(W^-)$$

defined by $P(A,\varphi) = \left(F_A^+ - \frac{1}{4}\eta(\varphi \otimes \varphi^*), \mathcal{D}_A \varphi\right)$.

The group $C^{\infty}(X, S^1)$ of gauge transformations on L acts on the domain of P by $(A, \varphi) \cdot g = (A - 2g^{-1}dg, \varphi g^{-1})$.

The differential dP together with the differential of the action of gauge group $C^{\infty}(X, S^1)$ is a first order elliptic differential operator and hence a Fredholm operator.

This operator dP is decomposed into the operators

$$(d^*+d^+,\mathcal{D}_A):i\Omega^1(X)\oplus\Gamma(W^+)\to i(\Omega^0(X)\oplus\Omega^{2,+}(X))\oplus\Gamma(W^-)$$

up to a compact perturbation.

We call the equations

$$\begin{cases} \mathcal{D}_A \varphi &= 0 \\ F_A^+ &= \frac{1}{4} \eta (\varphi \otimes \varphi^*) \end{cases}$$

the Seiberg-Witten monopole equations.

The group of gauge transformations acts on the space of solutions of the monopole equations. The quotient $\mathcal{M}(L) = P^+(O)/C^\infty(X,S^1)$ is called the moduli space associated with the spin structure L. If $c_1(L) \neq 0$ and $b_2^+ \geq 1$, then the moduli space $\mathcal{M}(L)$ does not contain reducible solutions for a genetric metric on X or compact perturbation of (*). If $b_2^+(X) \geq 2$, then any two choices of generic metrics give rise to a cobodism between two moduli spaces corresponded by the metrics. By the Atiyah-Singer index theorem, the dimension of $\mathcal{M}(L)$ is $d = -\frac{1}{4}(2\chi(X) + 3sign(X)) + \frac{1}{4}c_1(L)^2$.

Using the Weitzenböck formula for the Dirac operator \mathcal{D}_A , in [KM] Kronheimer and Mrowka showed that the moduli space $\mathfrak{M}(L)$ is compact and oriented. If the manifold X is symplectic, then the only non-empty moduli spaces have zero dimension. In this paper we only consider closed symplectic 4-manifolds and so we have only zero dimensional moduli spaces. In this case the Seiberg-Witten invariant for a spin structure L on X is defined by SW(L) the number of the points of moduli space $\mathfrak{M}(L)$ counted with sign. The basic properties of the Seiberg-Witten invariant are the followings.

THEOREM 2.1. Let X be a compact, oriented 4-manifold with $b_2^+ \ge 2$. If $c_1(L) \equiv w_2(X) \mod 2$, then

- (1) the invariant SW(L) is independent of the generic choice of the metrics on X.
- (2) SW(L) depends only on the cohomology class $c_1(L)$.
- (3) If h is a self-diffeomorphism of X, then $SW(h^*L) = \pm SW(L)$.

3. Vanishing Theorem

Let X be a closed symplectic 4-manifold. The tangent bundle TX of X admits an almost complex structure which is an endomorphism $J: TX \to TX$ with $J^2 = -Identity$. The almost complex structure J defines a splitting

$$T^*X\otimes \mathbb{C}=T^{1,0}\oplus T^{0,1}$$

where J acts on $T^{1,0}$ and $T^{0,1}$ as multiplication by -i and i, respectively. The canonical bundle K of the almost complex structure J is defined by $K = \Lambda^2 T^{1,0}$.

A symplectic structure ω on X is defined a closed two-form with $\omega \wedge \omega \neq 0$ everywhere. An almost complex structure J is said to be compatible with the symplectic structure ω if

- (1) $\omega(Jv_1, Jv_2) = \omega(v_1, v_2)$ and
- (2) $\omega(v, Jv) > 0$ for non-zero tangent vector v.

The space of compatible almost complex structures of a given symplectic structure on X is non-empty and contractible. If an almost complex structure J is compatible with ω , then for any $v, \omega \in TX$ $g(v,w) = \omega(v,Jw)$ defines a Riemannian metric on X. For such a metric on X, the symplectic structure ω is self-dual and gives the oriention on X. Conversely, any metric on X for which ω is self-dual can define an almost complex structure J which is compatible with the symplectic structure ω .

Let σ be an involution on the symplectic manifold (X, ω) , the involution σ is said symplectic, anti-sympletic if respectively $\sigma_*\omega = \omega$, $-\omega$.

LEMMA 3.1. Let (X, ω) be a closed symplectic 4-manifold. Then an involution σ on X is symplectic, anti-symplectic, if and only if respectively $\sigma_* J = J \sigma_*, -J \sigma_*$ for some compatible almost complex structure J with ω .

Proof. By averaging we may assume that g is a σ -invariant metric on X. There is an almost complex structure J on X which is compatible with the symplectic structure ω .

For any $v,w\in TX,\ g(v,w)=\omega(v,Jw).$ Suppose that σ is antisymplectic. Then

$$\begin{split} \sigma^*\omega &= -\omega \text{ iff for any } v, w \in T_pX \text{ at any point } p \in X \\ \omega(\sigma_*v, \sigma_*Jw) &= \sigma^*\omega(v, Jw) = -\omega(v, Jw) \\ &= -g(v, w) = -g(\sigma_*v, \sigma_*w) = -\omega(\sigma_*v, J\sigma_*w) \end{split}$$

Yong Seung Cho

$$= \omega(\sigma_* v, -J\sigma_* w),$$
iff $\sigma_* J w = -J\sigma_* w$ for any $w \in T_p X$,
iff $\sigma_* J = -J\sigma_*$.

Similarly we can prove that σ is symplectic if and only if $\sigma_*J=J\sigma_*$. \square

In [W1] Wang showed the following proposition using Witten's vanishing theorem for Seiberg-Witten invariant: If \overline{X} is a simply connected Kähler surface with $b_2^+(\overline{X}) > 1$ and σ is a free involution, then the quotient manifold $X = \overline{X}/\sigma$ cannot be decomposed as $X_1 \sharp X_2$ with $b_2^+(X_i) > 0$, i = 1, 2. We would like to study this proposition for the symplectic 4-manifolds with finite fundamental groups.

THEOREM 3.2. If \overline{X} is a closed symplectic 4-manifold with a finite fundamental group $\pi_1 \overline{X}$ and $b_2^+(\overline{X}) > 1$. If $\sigma : \overline{X} \to \overline{X}$ is a free involution, then the quotient manifold $X = \overline{X}/\sigma$ cannot be decomposed as $X_1 \sharp X_2$ with both $b_2^+(X_i) > 0$.

Proof. Considering the double cover $\overline{X} \to X$, we have a homotopy exact sequence $0 \to \pi_1 \overline{X} \to \pi_1 X \to \mathbb{Z}_2 \to 0$. Since $\pi_1 \overline{X}$ is finite, the order $|\pi_1 X| \equiv n$ of $\pi_1 X$ is finite and ≥ 2 .

Assume that $X = X_1 \sharp X_2$ with $b_2^+(X_i) > 0$, i = 1, 2. Since $\pi_1 X$ is finite we may assume that $\pi_1 X \cong \pi_1 X_1$ and $\pi_1 X_2 = \{1\}$. Let $\overline{\overline{X}}_1$ be the universal cover of X_1 . Then the universal cover $\overline{\overline{X}}$ of X is decomposed as $\overline{\overline{X}} \cong \overline{\overline{X}}_1 \sharp n X_2$.

Since $n \geq 2$ the Seiberg-Witten invariants on $\overline{\overline{X}}$ vanish for all spin C structure on $\overline{\overline{X}}$. While (\overline{X}, ω) is a symplectic 4-manifold, hence $\overline{\overline{X}}$ is a covering space of \overline{X} . Let $\pi: \overline{\overline{X}} \to (\overline{X}, \omega)$ be the projection. The pull back $\pi^*\omega$ is also a closed nondegenerate 2-form on $\overline{\overline{X}}$. Therefore $(\overline{\overline{X}}, \pi^*\omega)$ is a symplectic 4-manifold, with $b_2^+(\overline{\overline{X}}) \geq nb_2^+(X_2) \geq 2$, and hence has a non-zero Seiberg-Witten invariant. This contradiction gives the proof of the proposition. \Box

In [W1] Wang proved a vanishing theorem for Seiberg-Witten invariants on the quotients of Kähler surfaces under free anti-holomorphic involutions.

He used the condition $K^2 > 0$ to eliminate the reducible solutions of the Seiberg-Witten equations for all metrics. We would like to go around this condition by using σ -invariant generic perturbation of metrics on \overline{X} . In [C3] we used the similar method to get an equivariant moduli space of instantons.

THEOREM 3.3. Let \overline{X} be a closed symplectic 4-manifold with a finite fundamental group and $b_2^+(\overline{X}) > 3$. Suppose that $\sigma : \overline{X} \to \overline{X}$ is a free anti-symplectic involution. Then the quotient manifold $X = \overline{X}/\sigma$ has vanishing Seiberg-Witten invariants.

Proof. Let $\pi: \overline{X} \to X$ be the double covering projection. The Euler characteristics and the signatures are related by

$$\chi(\overline{X}) = 2\chi(X)$$
 and $\operatorname{sign}(\overline{X}) = 2 \cdot \operatorname{sign}(X)$.

Since the first Betti numbers $b_1(\overline{X}) = b_1(X)$, we have $b_2^+(X) = \frac{1}{2}[b_2^+(\overline{X}) - 1] > 1$.

Assume that the manifold X has a non-vanishing Seiberg-Witten invariant. We may choose a generic metric g on X, where the genericity means that the self-dual part of the curvature for the solution of the Seiberg-Witten equations is non-zero.

Let \underline{L} be a spin \overline{L} structure on X. It pulls back to a spin \overline{L} structure \overline{L} on \overline{X} through the projection π . Let W^{\pm} be the spinor bundles on X associated to the complex line bundle L. Then the pull back $\overline{W}^{\pm} = \pi^* W^{\pm}$ of W^{\pm} is the associated spinor bundles of the line bundle \overline{L} on \overline{X} . The pull back $\overline{g} = \pi^* g$ is a σ -invariant metric on \overline{X} . Let $\overline{\omega}$ be a self-dual symplectic 2-form on \overline{X} . Then we may have an almost complex structure J on \overline{X} such that

$$\overline{g}(v,w) = \overline{\omega}(v,Jw) \quad \text{for all} \quad v,w \in T\overline{X}.$$

Suppose that (A, ϕ) is an irreducible solution to the Seiberg-Witten equations for the spin^C structure L and the generic metric g on X, where A is a connection on L and ϕ a section on W^+ . We can easily check that the pull-back $(\overline{A}, \overline{\phi})$ through the projection π is also a solution to the Seiberg-Witten equations on \overline{X} , because essentially everything is locally the same, for details see [W1]. Moreover $(\overline{A}, \overline{\phi})$ is

also irreducible. Indeed, if (A,ϕ) is irreducible, then $F_A^+ \not\equiv 0$ is not identically zero. There is a point $x \in X$ such that $F_A^+(x) \not\equiv 0$. If $\pi(\overline{x}) = x$, then $F_A^+(\overline{x}) \not\equiv 0$. Since $(\overline{A},\overline{\phi})$ is an irreducible solution, the self-dual part F_A^+ of F_A^- is not identically zero.

The first Chern class $c_1(\overline{L}) = \frac{i}{2\pi} F_{\overline{A}}$ is not ant -self-dual. Since the symplectic structure $\overline{\omega}$ is self-dual, we have $c_1(\overline{L}) \cdot \overline{\omega} \ngeq 0$ by (4.7) of Witten [W]. While the anti-symplectic involution σ preserves the orientation of \overline{X} because $\sigma^*(\overline{\omega} \wedge \overline{\omega}) = \overline{\omega} \wedge \overline{\omega}$. However $c_1(\overline{L}) \cdot \overline{\omega} = \sigma^* c_1(\overline{L}) \cdot \sigma^* \overline{\omega} = -(c_1(\overline{L}) \cdot \overline{\omega})$ and hence $c_1(\overline{L}) \cdot \overline{\omega} = 0$. The contradiction proves the vanishing of Seiberg-Witten invariants on X.

REMARK. 1. In the Theorem 3.3 the quotient space $X = \overline{X}/\sigma$ is a smooth 4-manifold which does not have any symplectic structure.

2. By (3.2) and (3.3) the quotient $X = \overline{X}/\sigma$ cannot be decomposed as $X = X_1 \sharp X_2$ with both $b_2^+(X_i) > 0$ and has vanishing Seiberg-Witten invariant.

4. Smooth Structures on Quotient Manifolds

Donaldson proved that the Dolgachev surface $D_{2,3}$ and $\mathbb{CP}^2\sharp 9\overline{\mathbb{CP}^2}$ are homeomorphic but not diffeomorphic. This implies that the h-cobordism conjecture in 4-manifolds does not hold. After that many people have gotten many good results on smooth structures of 4-manifolds using the Donaldson's invariant. Recently in [W2] Wang showed that the quotients of a complex surface under free holomorphic, anti-holomorphic involutios are homeomorphic but not diffeomorphic to each other using the Seiberg-Witten invariants. A smooth map σ : $(M_1, J_1) \to (M_2, J_2)$ between complex manifolds is called anti-holomorphic if $\sigma_* J_1 = -J_2 \sigma_*$ on the tangent bundles, where J_1 and J_2 are the complex structures on M_1 and M_2 , respectively. We denote K_M the canonical bundle of an almost complex manifold M.

THEOREM 4.1 [W2]. Let \overline{X} be a simply connected Kähler surface, and suppose that η , σ are two free involutions on \overline{X} , which are respectively holomorphic, anti-holomorphic.

(1) If $K_{\overline{X}}^2 > 0$ and $b_2^+(\overline{X}) > 3$, then the quotient manifolds X =

- \overline{X}/η , $X' = \overline{X}/\sigma$ are not diffeomorphic to each other.
- (2) If X is not spin, then X and X' are homeomorphic to each other.

In this section we would like to study the Theorem 4.1 for the symplectic 4-manifolds with finite fundamental groups. We will use the Theorem 3.3 to avoid the condition $K^2 > 0$.

THEOREM 4.2. Let \overline{X} be a closed symplectic 4-manifold with a finite fundamental group. Suppose that η , σ are two free involutions on \overline{X} , which are respectively symplectic, anti-symplectic.

- (a) If $b_2^+(\overline{X}) > 3$, then the quotient manifolds $X = \overline{X}/\eta$, $X' = \overline{X}/\sigma$ are not diffeomorphic to each other.
- (b) If \overline{X} is simply connected and X is not spin, then X and X' are homeomorphic to each other.

Proof. (a) Considering the double covering $\pi: \overline{X} \to X$ we have the Euler characteristics and signature formulae $\chi(\overline{X}) = 2\chi(X)$, sign $(\overline{X}) = 2 \operatorname{sign}(X)$, and $b_2^+(X) = \frac{1}{2}[b_2^+(\overline{X}) - 1] > 1$.

By averaging $\overline{g} = \frac{1}{2}(h + \eta^* h)$ for any metric h on \overline{X} and a self-dual symplectic structure $\overline{\omega}$ on \overline{X} we have an almost complex structure J on \overline{X} which is compatible with $\overline{\omega}$. This symplectic structure $\overline{\omega}$ is preserved by η . The projection $\pi: \overline{X} \to X$ pushes down the symplectic structure $\overline{\omega}$ and the metric \overline{g} to the symplectic structure ω and the metric g on X. Therefore the quotient manifold (X, ω) is a symplectic manifold.

By Taubes [T], the Seiberg-Witten invariants on X are defined generically, and the Seiberg-Witten invariant for the canonical bundle K_X on X is non-trivial. While by Theorem 3.3 all Seiberg-Witten invariants on X' vanish. Since the Seiberg-Witten invariants are diffeomorphic invariants, the quotient manifolds X and X' are not diffeomorphic to each other.

(b) The proof is the same as the proof of (2) of Theorem 4.1. For details see [W2].

REMARK 4.3. 1. If \overline{X} is a simply connected closed symplectic 4-manifold with $b_2^+(\overline{X}) > 3$, then the quotient manifold by symplectic (anti-symplectic) involutions as in Theorem 4.2 are homeomorphic but not diffeomorphic to each other.

Yong Seung Cho

- 2. In (b) of Theorem 4.2, we assume that \overline{X} is simply connected because the fundamental groups of the quotients will be \mathbb{Z}_2 , and spin structures determine the topological structures of the quotients. If we know the classification of 4-manifolds with finite fundamental groups, then we may extend the Theorem 4.2 (b).
- 3. There are many (simply connected) closed non-Kähler, symplectic 4-manifolds. In fact Gompf [G] constructed infinite families of simply connected symplectic 4-manifolds which are non-Kähler. For instance, let M_1 , M_2 be simply connected Dolgachev surfaces. By Dehn twisting fiber sum for the fibers of the relative prime multiplicities we have the symplectic fiber sum $M = M_1 \sharp M_2$ which is not Kähler, but symplectic.

References

- [C1] Y. S. Cho, Seiberg-Witten invariants on connected sums of 4-manifolds, Preprint.
- [C2] Y. S. Cho, Finite group actions on the moudli space of self-dual connections (1), vol. 323(1), Trans. A.M.S., 1991, pp. 233-261.
- [C3] Y. S. Cho, Equivarient metrics for smooth moduli spaces, vol. 62, Topology and Its Applications, 1995, pp. 77-85.
- [D1] S. Donaldson, Polynomial invariants for smooth four-manifolds, vol. 29, Topology, 1990, pp. 257-315.
- [D2] S. Donaldson, Irrationality and the h-cobordism conjecture, vol. 26, J. Differ. Geom., 1987, pp. 141-168.
- [FS] R. Fintushel and R. Stern, An exotic free involution on S⁴, vol. 113, Ann. Math., 1981, pp. 357-365.
- [FM] R. Friedman and J. Morgan, On the diffeomorphism type of certain algebraic surfaces I, vol. 27, J. Diff. Geom., 1988, pp. 297-369
- [G] R. Gompf, A new construction of symplectic manifolds, Preprint.
- [G] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, vol. 82, Invent. Math., 1985, pp. 307-347.
- [HK1] I. Hambleton and M. Kreck, Smooth structres on algebraic surfaces with cyclic fundamental group, vol. 91, Invt. Math., 1988 pp. 53-59.
- [HK2] _____, Smooth structures on algebraic surfaces with finite fundamental group, vol. 102, Invt. Math., 1990, pp. 109-114.
- [HK3] _____, Cancellation, elliptic surfaces and the topology of certain four-man ifolds, vol. 444, J. Reine Angew. Math., 1993, pp. 79-100.
- [K] D. Kotschick, On irreducible four-manifolds, preprint.
- [KM] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, vol. 1, Math. Research Letters, 1994, pp. 794-808.

Smooth structures on symplectic 4-manifolds

- [KMT] D. Kotschick, S. Morgan and C. Taubes, Four-manifolds without symplectic structures but with nontrivial Seiberg-Witten invariants, vol. 2, Math. Research Letters, 1995, pp. 119-124.
- [T] C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, vol. 1, Math. Research Letters, 1994, pp. 809-822.
- [W] E. Witten, Monopoles and four-manifolds, vol. 1, Math. Res. Letters, 1994, pp. 769-796.
- [W1] S. Wang, A vanishing theorem for Seiberg-Witten invariants, vol. 2, Math. Res. Letters, 1995, pp. 305-311.
- [W2] S. Wang, Smooth structures on complex surfaces with fundamental group \mathbb{Z}_2 , Preprint.

DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA