REGULAR GRAPHS AND DISCRETE SUBGROUPS OF PROJECTIVE LINEAR GROUPS

Hi-joon Chae

Abstract

The homothety classes of lattices in a two dimensional vector space over a nonarchimedean local field form a regular tree \mathcal{T} of degree $q+1$ on which the projective linear group acts naturally where q is the order of the residue field. We show that for any finite regular combinatorial graph of even degree $q+1$, there exists a torsion free discrete subgroup Γ of the projective linear group such that \mathcal{T} / Γ is isomorphic to the graph.

1. Introduction

Discrete subgroups of semisimple (real, p-adic, or adelic) Lie groups play important roles in geometry and number theory and have been studied intensively. (See [1] and references there.) Such a Lie group G often acts transitively on a space and we may identify the space with $K \backslash G$ where K is the stabilizer of a point. For example, we have

$$
\mathcal{H}^{+} \cong \mathrm{SO}(2) \backslash \mathrm{SL}_{2}(\mathbb{R})
$$

where \mathcal{H}^{+}is the complex upper half plane on which $\mathrm{SL}_{2}(\mathbb{R})$ acts by linear fractional transformations and $\mathrm{SO}(2)$ is the stabilizer of i under this action. For a discrete subgroup Γ, like $\mathrm{SL}_{2}(\mathbb{Z})$ of $\mathrm{SL}_{2}(\mathbb{R})$, the quotient space \mathcal{H}^{+} / Γ (or its compactification) and functions, differential forms, etc. on it are important objects of number theory [5].

We have a p-adic analogue of the above example. Let \mathcal{T} be the tree of (homothety classes of) lattices in \mathbb{Q}_{p}^{2}. It is a regular tree of degree $p+1$. (See $\S 4$ for details.) Then $\operatorname{PGL}_{2}\left(\mathbb{Q}_{p}\right)$ acts on \mathcal{T} and $\mathrm{PGL}_{2}\left(\mathbb{Z}_{p}\right)=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) / \mathbb{Z}_{p}^{*}$ is the stabilizer of the vertex corresponding

[^0]to the standard lattice \mathbb{Z}_{p}^{2}. Thus we have
$$
\mathcal{T} \cong \mathrm{PGL}_{2}\left(\mathbb{Z}_{p}\right) \backslash \mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)
$$

For a torsion free discrete subgroup Γ of $\mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)$ with compact quotient, the quotient space \mathcal{T} / Γ is a finite graph. In [2], an explicit algorithm to construct all such subgroups is given. We reproduce it in $\S 5$ for the convenience of readers. An initial input data of this algorithm is an integral symmetric matrix satisfying certain conditions: A-1, A-2, A-3 in §5.

Let \mathcal{G} be a finite connected graph. Then the universal covering \mathcal{U} of \mathcal{G} (or more precisely, of a topological realization of \mathcal{G}) is a tree, on which the fundamental group $\pi_{1}(\mathcal{G})$ acts and we have $\mathcal{G} \cong \mathcal{U} / \pi_{1}(\mathcal{G})$. If \mathcal{G} is a regular graph of degree $p+1$, then \mathcal{U} is isomorphic to \mathcal{T} above. And we may ask if we can realize the action of $\pi_{1}(\mathcal{G})$ on \mathcal{U} as that of (a subgroup of) $\mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)$ on \mathcal{T}.

In this paper, we show that for any regular finite connected combinatorial graph \mathcal{G} of degree $p+1$ with p an odd prime, there exists a torsion free discrete subgroup Γ of $\mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)$ such that $\mathcal{G} \cong \mathcal{T} / \Gamma$ (Theorem 6.1). A point of this proof is that if we order the vertices suitably (applying the breadth-first search algorithm, to be more precise) then the adjacency matrix with respect to this ordering of vertices satisfies the above mentioned conditions and the algorithm of [2] can be applied. We also give an example of Γ such that $\mathcal{G} \cong \mathcal{T} / \Gamma$ when \mathcal{G} is a complete regular graph in $\S 7$.

In $\S 2, \S 3$ and $\S 4$, we review quickly necessary terms on graph theory and facts on groups acting on trees as well as on trees of (homothety classes of) lattices. Our reference for these is [4].
Notations: In this paper, the identity element of a group will be denoted by 1. For a subset S of a group, we let $S^{-1}=\left\{s^{-1} \mid s \in S\right\}$.

2. Graphs

We recall basic definitions to fix notations. We refer [4] for more detail as well as for notions unexplained below. A graph \mathcal{G} consists of a set $V=V(\mathcal{G})$ of vertices and a set $E=E(\mathcal{G})$ of edges equipped with two maps $E \rightarrow V \times V, e \mapsto(o(e), t(e))$ and $E \rightarrow E, e \mapsto \bar{e}$ such that $o(\bar{e})=t(e), t(\bar{e})=o(e), \overline{\bar{e}}=e$ and $\bar{e} \neq e$ for each $e \in E$. For an edge $e \in E$, we call $o(e), t(e)$ and \bar{e} the origin, the terminus and the inverse of e, respectively.

An orientation of a graph \mathcal{G} is a subset $E_{+} \subset E=E(\mathcal{G})$ such that E is the disjoint union of E_{+}and \bar{E}_{+}where \bar{E}_{+}is the set of \bar{e} with $e \in E_{+}$. A morphism between graphs and an automorphism of a graph are defined in an obvious way.

Remark 2.1. The above definition of graphs allows loops (i.e. an edge e with $o(e)=t(e)$) and multiple edges (i.e. edges $e \neq e^{\prime}$ with $o(e)=o\left(e^{\prime}\right), t(e)=t\left(e^{\prime}\right)$. A graph without loops nor multiple edges (or equivalently, without a circuit of length ≤ 2) is called combinatorial.

Example 2.2. Let Γ be a group and $S \subset \Gamma$ be a set of generators for G. The (oriented) graph $\mathcal{G}=\mathcal{G}(\Gamma, S)$ is defined by $V(\mathcal{G})=\Gamma$ and $E(\mathcal{G})_{+}=\Gamma \times S$ with $o(e)=g$ and $t(e)=g s$ for an edge $e=(g, s)$. It is not difficult to see the following for $\mathcal{G}=\mathcal{G}(\Gamma, S)$.

1. It is a combinatorial graph if and only if $S \cap S^{-1}=\emptyset$.
2. It is a regular graph of degree $2|S|$.
3. It is a tree if and only if Γ is a free group with basis S.
4. The multiplication (from the left) by elements of Γ gives orientation preserving automorphisms of \mathcal{G}.

3. Groups acting on trees

A tree is a connected graph without circuits. In particular, a tree is a combinatorial graph. A group action on a graph is defined in an obvious way: a group acts on the sets of vertices and edges preserving the incidence relation. We say a group Γ acts on a graph \mathcal{G} freely if the action on $V(\mathcal{G})$ is free and the action on $E(\mathcal{G})$ is without inversion (i.e. for all $g \neq 1 \in \Gamma$ and $v \in V, e \in E$ we have $g v \neq v$ and $g e \neq \bar{e})$. For example, the action of Γ on the graph $\mathcal{G}(\Gamma, S)$ in Example 2.2 (4) is free.

Suppose a group Γ acts on a tree \mathcal{T} freely. Let \mathcal{T}^{\prime} be a maximal subtree of the quotient graph $\mathcal{G}=\mathcal{T} / \Gamma$, i.e. a subgraph of \mathcal{G} which is a tree with $V\left(\mathcal{T}^{\prime}\right)=V(\mathcal{G})$. Let $\mathcal{T}^{\prime \prime}$ be a lift of \mathcal{T}^{\prime} as a subtree of \mathcal{T}, which always exists by [4, §3.1, Proposition 14]. Choose an orientation E_{+}of \mathcal{T}. Let S be the set of $g \neq 1 \in G$ such that there exists an edge in E_{+} from x to $g y$ with $x, y \in V\left(\mathcal{T}^{\prime \prime}\right)$.

Theorem 3.1 (Theorem 4^{\prime} in $\S 3.3$, [4]). A group Γ acting freely on a tree \mathcal{T} is a free group. More precisely, the set S obtained as above is a basis for Γ.

4. Tree of lattices

Let \mathfrak{K} be a local field (e.g. a finite extension of \mathbb{Q}_{p}) and let $\mathfrak{O}=\{x \in$ $\mathfrak{K}||x| \leq 1\}$ where $|\mid$ is the nonarchimedean norm on \mathfrak{K}. Also let ω be a prime element and let $\mathfrak{p}=\omega \mathfrak{O}, \mathfrak{k}=\mathfrak{O} / \mathfrak{p}, q=|\mathfrak{O} / \mathfrak{p}|$ be the maximal ideal, the residue field of \mathfrak{O} and its order, respectively.

A lattice in the vector space \mathfrak{K}^{2} is a sub \mathfrak{O}-module generated by a basis for \mathfrak{K}^{2}. Two lattices L, L^{\prime} in \mathfrak{K}^{2} are said to be equivalent if there exists $\lambda \in \mathfrak{K}^{*}$ such that $L^{\prime}=\lambda L$.

Definition 4.1. The graph $\mathcal{T}=\mathcal{T}\left(\mathfrak{K}^{2}\right)$ is defined as follows:

- Its vertices are the equivalence classes of lattices in \mathfrak{K}^{2}.
- Two vertices v, v^{\prime} are adjacent if there exist lattices L, L^{\prime} with $v=[L], v^{\prime}=\left[L^{\prime}\right]$ such that $L \subset L^{\prime}$ and $\left|L^{\prime} / L\right|=q$.
Proposition 4.2 ([4]). The graph \mathcal{T} is a regular tree of degree $q+1$ on which the group $G=\mathrm{PGL}_{2}(\mathfrak{K})$ acts in an obvious way.

We suppose it acts from the right viewing elements of \mathfrak{K}^{2} as row vectors. This action is transitive on vertices. Since the stabilizer of the vertex $\mathfrak{o}=\left[\mathfrak{O}^{2}\right]$ is $K=\mathrm{GL}_{2}(\mathfrak{O}) / \mathfrak{O}^{*}$, we have $V(\mathcal{T}) \cong K \backslash G$ as G-sets.

REmARK 4.3. The above action of $\mathrm{PGL}_{2}(\mathfrak{K})$ has inversion. For example, if e is the edge from $[\mathfrak{O} \oplus \mathfrak{O}]$ to $[\mathfrak{O} \oplus \omega \mathfrak{O}]$, then $\left(\begin{array}{ll}0 & 1 \\ \omega & 0\end{array}\right)$ maps e to its inverse. On the other hand, the action of $\mathrm{PSL}_{2}(\mathfrak{K})$ on \mathcal{T} has no inversion. But its action on the set of vertices is not transitive: there are two orbits.

5. Discrete subgroups of projective linear groups

In this section, we review part of [2] on construction of torsion free discrete subgroups of $G=\mathrm{PGL}_{2}(\mathfrak{K})$. We keep the notations of the last section. We suppose p, the residual characteristic of \mathfrak{K} is odd.

Theorem 5.1 (Theorem 1 in [2]). A torsion free discrete subgroup of $\mathrm{PGL}_{2}(\mathfrak{K})$ is free.

Proof. Suppose Γ is a torsion free discrete subgroup of G. By Theorem 3.1, it is enough to show that Γ acts on \mathcal{T} freely. For any $x \in G$, $\Gamma \cap x^{-1} K x$ is finite since it is discrete and compact. Since Γ is torsion free, this implies $\Gamma \cap x^{-1} K x=\{1\}$. Hence the action of Γ on the vertex set of \mathcal{T} is free since $x^{-1} K x$ is the stabilizer of the vertex $\mathfrak{o x}$. If the action of $\gamma \in \Gamma$ is an inversion. Then γ^{2} fixes a vertex. Hence $\gamma^{2}=1$, which is a contradiction.

The original proof of the above theorem gives an algorithm to find a basis for a given Γ. By reversing this procedure carefully, we can construct all torsion free discrete subgroups of G. An explicit algorithm is given in $[2, \S 4]$, which we reproduce below.

First, a preliminary set up: Choose $\pi_{0}, \pi_{1}, \cdots, \pi_{q} \in G$ such that $\mathfrak{o} \pi_{0}, \cdots, \mathfrak{o} \pi_{q}$ are the vertices adjacent to $\mathfrak{o}=[\mathfrak{O} \oplus \mathfrak{O}]$ in \mathcal{T}. For each $0 \leq i \leq q, \mathfrak{o} \pi_{0} \pi_{i}, \mathfrak{o} \pi_{1} \pi_{i}, \cdots, \mathfrak{o} \pi_{q} \pi_{i}$ are the vertices adjacent to $\mathfrak{o} \pi_{i}$. Hence there exists a unique $\varphi(i)$ such that $\mathfrak{o} \pi_{\varphi(i)} \pi_{i}=\mathfrak{o}$, i.e. $\pi_{\varphi(i)} \pi_{i} \in K$.

Second, the input data of the construction: Let $A=\left(a_{i j}\right)$ be a symmetric $h \times h$ matrix satisfying the following conditions. For each $i>1$, let $\rho(i)$ be such that $a_{i \rho(i)}$ is the first non-zero entry in the i-th row of A.
A-1 All the entries of A are non-negative integers and diagonal entries are even.
A-2 For each $i, \sum_{j=1}^{h} a_{i j}=q+1$.
A-3 For each $i>1, \rho(i)<i$ and $\rho(2) \leq \rho(3) \leq \cdots \leq \rho(h)$.
The actual construction consists of several steps. For each $1 \leq i, j \leq$ h, we can choose $P_{i j} \subset\{0,1, \cdots, q\}$ satisfying the following conditions (i), \cdots, (iv): (i) $\left|P_{i j}\right|=a_{i j}$ and (ii) $P_{1 j} \cup P_{2 j} \cup \cdots \cup P_{q j}$ is a partition of $\{0, \cdots, q\}$ for each j. For each $1 \leq i \leq h$, let μ_{i} be the least element in $P_{i \rho(i)}$. We require that (iii) $\varphi\left(\mu_{i}\right) \in P_{\rho(i) i}$ and (iv) $\mu_{i}>\mu_{i^{\prime}}$ whenever $\rho(i)=\rho\left(i^{\prime}\right)$ and $i>i^{\prime}$.

For each $1 \leq i, j \leq h$, we choose a bijection $\sigma_{i j}: P_{i j} \rightarrow P_{j i}$ such that (i) $\sigma_{j i} \sigma_{i j}=1$, (ii) $\sigma_{i i}$ is without a fixed point and (iii) for each $1<i \leq h$, $\sigma_{i \rho(i)}\left(\mu_{i}\right)=\varphi\left(\mu_{i}\right)$. Define $x_{1}, x_{2}, \cdots, x_{h} \in G$ inductively by

$$
\begin{equation*}
x_{1}=1, \quad x_{i}=\pi_{\mu_{i}} x_{\rho(i)} \quad \text { for } i>1 \tag{1}
\end{equation*}
$$

For each i, j and $\nu \in P_{i j}$, we can choose

$$
\begin{equation*}
x_{i j}^{(\nu)} \in K \pi_{\nu} \cap \pi_{\sigma_{i j} \nu}^{-1} K \tag{2}
\end{equation*}
$$

such that $x_{j i}^{\left(\sigma_{i j} \nu\right)}=\left(x_{i j}^{(\nu)}\right)^{-1}$ and $x_{i \rho(i)}^{\left(\mu_{i}\right)}=\pi_{\mu_{i}}$. For each $1 \leq i, j \leq h$, let

$$
\begin{gathered}
\mathbf{P}_{i j}=\left\{x_{i j}^{(\nu)} \mid \nu \in P_{i j}\right\} \\
S_{i j}=x_{i}^{-1} \mathbf{P}_{i j} x_{j}
\end{gathered}
$$

(We set $\mathbf{P}_{i j}=S_{i j}=\emptyset$ for $a_{i j}=0$.) Then $1 \in S_{i \rho(i)}$ for each $i>1$. We also have $S_{j i}=S_{i j}^{-1}$, and $S_{i i}=S_{i i}^{-1}$ in particular. Choose T_{i} such that $S_{i i}$ is the disjoint union of T_{i} and T_{i}^{-1}.

Theorem 5.2 (Theorem 3 in [2]). Given an $h \times h$ symmetric matrix $A=\left(a_{i j}\right)$ satisfying $A-1, A-2, A-3$ above, the sets $S_{i j}$ for $i>j>\rho(i)$, $S_{i \rho(i)}-\{1\}$ and T_{i} generate a torsion free discrete subgroup Γ of G. The above sets are disjoint and form a basis for the free group Γ. Hence we have

$$
\operatorname{rank}(\Gamma)=\frac{(q-1) h}{2}+1
$$

Moreover, $\left\{x_{1}, \cdots, x_{h}\right\}$ is a set of representatives for $K \backslash G / \Gamma$. Every torsion free discrete subgroup of G can be constructed in this way.

6. Regular graphs as quotients of \mathcal{T}

Let \mathcal{G} be a finite combinatorial regular graph of degree $q+1$. Our goal in this section is to construct a torsion free discrete subgroup Γ of $G=\mathrm{PGL}_{2}(\mathfrak{K})$ such that $\mathcal{G} \cong \mathcal{T} / \Gamma$. Let $h=|V(\mathcal{G})|$.

Let \mathcal{T}^{\prime} be the spanning tree of \mathcal{G} obtained by the breadth-first search algorithm starting from a vertex v_{1}. And we reindex vertices v_{2}, v_{3}, \cdots in the order visited during the search. More precisely, starting from v_{1} we append vertices v_{2}, \cdots adjacent to v_{1} and edges from v_{1} to them to \mathcal{T}^{\prime}. These vertices are called children of v_{1} and 1st generation descendents of v_{1}. Among the remaining vertices, we append children of (i.e. vertices adjacent to) v_{2}, then those of v_{3}, \ldots to \mathcal{T}^{\prime}. Children of 1 st generation descendents are called 2 nd generation descendents. In the end, we obtain a spanning tree \mathcal{T}^{\prime} of \mathcal{G} and the generation measures the distance from v_{1} in \mathcal{T}^{\prime}. (See [3] for detail.) Let $A=\left(a_{i j}\right)$ be the adjacency matrix of $\mathcal{G}: a_{i j}=1$ if v_{i} and v_{j} is adjacent, and $a_{i j}=0$ otherwise.

Theorem 6.1. Let \mathcal{G} be a finite combinatorial regular graph of degree $q+1$. Then there exists a torsion free discrete subgroup Γ of $\mathrm{PGL}_{2}(\mathfrak{K})$ such that $\mathcal{G} \cong \mathcal{T} / \Gamma$ where \mathcal{T} is the tree of homothety classes of lattices in \mathfrak{K}^{2}.

More precisely, if we index vertices of \mathcal{G} as above, then the adjacency matrix A satisfies the conditions $A-1, A-2, A-3$ required in Theorem 5.2. And for any subgroup Γ constructed as in the same theorem starting from A, we have $\mathcal{G} \cong \mathcal{T} / \Gamma$.

Proof. The conditions A-1 and A-2 are satisfied obviously. And A-3 follows from the ordering of vertices $v_{1}, v_{2}, \cdots, v_{h}$. Really, suppose v_{i} is a child of v_{j} in the breadth-first search of vertices of \mathcal{G} as above. Then by the ordering of vertices, we have $i>j$ and $a_{i j}=1$. This shows $\rho(i)<i$. Moreover, we have $\rho(i)=j$ since otherwise v_{i} must be visited
earlier during the search. If v_{i+1} is also a child of v_{j}, then we have $\rho(i)=\rho(i+1)=j$. Otherwise, v_{i+1} is a child of $v_{j^{\prime}}$ with $j^{\prime}>j$, thus $\rho(i)=j<j^{\prime}=\rho(i+1)$.

Let $x_{1}, \cdots, x_{h} \in G$ be given inductively by (1). We claim that the map $v_{i} \mapsto \mathfrak{o} x_{i}$ induces an isomorphism between \mathcal{T}^{\prime} and the subtree $\mathcal{T}^{\prime \prime}$ of \mathcal{T} generated by $\mathfrak{o} x_{1}, \cdots, \mathfrak{o} x_{h}$. Really, suppose v_{i} is a child v_{j}. Then as proven above, we have $\rho(i)=j$ and $x_{i}=\pi_{\mu_{i}} x_{j}$. Since $\mathfrak{o} x_{i}=\mathfrak{o} \pi_{\mu_{i}} x_{j}$ and $\mathfrak{o} x_{j}$ are adjacent in \mathcal{T}, this implies the map $\mathcal{T}^{\prime} \rightarrow \mathcal{T}, v_{i} \mapsto \mathfrak{o} x_{i}$ is an injective graph morphism whose image is a subtree of \mathcal{T} with vertices $\mathfrak{o} x_{1}, \cdots, \mathfrak{o} x_{h}$. By definition, this subtree is $\mathcal{T}^{\prime \prime}$.

We proceed with the construction in Theorem 5.2. Choose sets $P_{i j}$, $\mathbf{P}_{i j}=\left\{x_{i j}\right\}$. (Since $\left|P_{i j}\right|=\left|\mathbf{P}_{i j}\right|=1$ if not empty, we will write $x_{i j}$ for $x_{i j}^{(\nu)}$ with $\nu \in P_{i j}$ to simplify notations.) And let $s_{i j}=x_{i}^{-1} x_{i j} x_{j}$. Then $\left\{s_{i j} \mid i>j>\rho(i), a_{i j} \neq 0\right\}$ is a basis for Γ. We have $s_{j i}=s_{i j}^{-1}$ and $s_{i \rho(i)}=x_{i}^{-1} \pi_{\mu_{i}} x_{j}=1$.

By Theorem 5.2, $\left\{\mathfrak{o} x_{1}, \cdots, \mathfrak{o} x_{h}\right\}$ is a set of representatives for vertices of \mathcal{T} / Γ. Thus the above $\mathcal{T}^{\prime \prime}$ is a maximal subtree of \mathcal{T} / Γ. Fix j. Then by (2), $\mathfrak{o} x_{i j}$ for $1 \leq i \leq h$ with $a_{i j} \neq 0$ are the $q+1$ vertices adjacent to \mathfrak{o}. Hence $\mathfrak{o} x_{i j} x_{j}=\mathfrak{o} x_{i} s_{i j}$ are the vertices adjacent to $\mathfrak{o} x_{j}$. Thus $\overline{\mathfrak{o} x_{i}}$ and $\overline{\overline{\mathfrak{o}} x_{j}}$ are adjacent in \mathcal{T} / Γ if $a_{i j}=1$. (Let us denote by \bar{v} the image of $v \in V(\mathcal{T})$ under $\mathcal{T} \rightarrow \mathcal{T} / \Gamma$.) Conversely, suppose $\overline{\mathfrak{o} x_{k}}$ and $\overline{\mathfrak{o} x_{j}}$ are adjacent in \mathcal{T} / Γ. The edge from $\overline{\mathfrak{o} x_{j}}$ to $\overline{\mathfrak{o} x_{k}}$ in \mathcal{T} / Γ can be lifted to an edge e in \mathcal{T} from $\mathfrak{o} x_{j}$, whose end point must be one of $q+1$ vertices $\mathfrak{o} x_{i} s_{i j}\left(1 \leq i \leq h, a_{i j} \neq 0\right)$ adjacent to $\mathfrak{o} x_{j}$ in \mathcal{T}. Sine $\overline{\mathfrak{o} x_{i} s_{i j}}=\overline{\mathfrak{o} x_{i}}$ are distinct each other, the end point of e is $\mathfrak{o} x_{k} s_{k j}$. Thus $a_{k j}=1$. This proves the adjacency matrix of \mathcal{T} / Γ is equal to A.

Corollary 6.2. Let \mathcal{G} be a finite regular combinatorial graph of degree $q+1$ where q can be any positive integer. Then the adjacency matrix of \mathcal{G} is conjugate by a permutation matrix to a symmetric matrix satisfying A-1, A-2, A-3 of Theorem 5.2.

Proof. We have shown in the proof of the last theorem that if we reindex the vertices by applying breadth-first search then the adjacency matrix with respect this ordering sarisfies the required conditions.

7. Example

Let \mathcal{G} be a complete regular graph of degree $p+1$ where p is an odd prime. We want to find a basis for a torsion free discrete subgroup Γ
of $\mathrm{PGL}_{2}(\mathfrak{K})$ such that $\mathcal{G} \cong \mathcal{T} / \Gamma$ where $\mathfrak{K}=\mathbb{Q}_{p}$ or $\mathbb{F}_{p}((z))$, the field of Laurent series in the indeterminate z with coefficients in $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Let $\omega=p$ or z be a prime element of \mathfrak{K} in each case.

Let $\pi_{0}=\left(\begin{array}{cc}0 & 1 \\ \omega & 1\end{array}\right)$. Then $\mathfrak{o} \pi_{0} g$ with $g \in K=\mathrm{GL}_{2}(\mathfrak{D}) / \mathfrak{Q}^{*}$ are vertices adjacent to \mathfrak{o} and vice versa. Choosing a set $\left\{\alpha_{0}, \cdots, \alpha_{p}\right\}$ of representatives for $\pi_{0}^{-1} K \pi_{0} \cap K \backslash K$ as

$$
\alpha_{i}=\left(\begin{array}{ll}
1 & 0 \tag{3}\\
i & 1
\end{array}\right) \quad \text { for } 0 \leq i \leq p-1, \quad \alpha_{p}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

we can take π_{1}, \cdots, π_{p} as

$$
\pi_{i}=\pi_{0} \alpha_{i} \quad(0 \leq i \leq p) \quad \text { where } \pi_{0}=\left(\begin{array}{cc}
0 & 1 \tag{4}\\
\omega & 0
\end{array}\right) .
$$

Note that for any i, we have $K \pi_{i}^{-1}=K \pi_{0}$, hence $\varphi(i)=0$.
Let $h=p+2=|V(\mathcal{G})|$. The adjacency matrix $A=\left(a_{i j}\right)$ is the $h \times h$ matrix with $a_{i j}$ equal to 0 if $i=j$ and 1 otherwise. Hence it satisfies the conditions of Theorem 5.2: we have $\rho(2)=\rho(3)=\cdots=\rho(h)=1$. We define sets $P_{i j} \subset\{0,1, \cdots, p\}$ as follows:

$$
\begin{gathered}
P_{i i}=\emptyset \quad(1 \leq i \leq h) \\
P_{21}=\{0\}, P_{31}=\{1\}, P_{41}=\{2\}, \cdots, P_{h 1}=\{p\} \\
P_{12}=P_{13}=\cdots=P_{1 h}=\{0\} \\
P_{i j}= \begin{cases}\{i-j\} & \text { if } 2 \leq j<i \leq h \\
\{i-j+p+1\} & \text { if } 2 \leq i<j \leq h\end{cases}
\end{gathered}
$$

Then we have

$$
x_{1}=1, x_{2}=\pi_{0}, x_{3}=\pi_{1}, \cdots, x_{h}=\pi_{p} .
$$

The maps $\sigma_{i j}: P_{i j} \rightarrow P_{j i}$ are obvious ones. We should choose for each pair (i, j) with $2 \leq j<i \leq h$ an element of $\mathrm{PGL}_{2}(\mathfrak{K})$

$$
x_{i j} \in K \pi_{i-j} \cap \pi_{j-i+p+1}^{-1} K
$$

We may put for (i, j) with $2 \leq j<i \leq h$

$$
x_{i j}=\alpha_{j-i+p+1}^{-1} \pi_{0} \alpha_{i-j}
$$

Then $\left\{x_{i}^{-1} x_{i j} x_{j} \mid 2 \leq j<i \leq h\right\}$ is a basis for a desired subgroup Γ. Вy shifting indices, we obtain the following.

Proposition 7.1. Let $\mathfrak{K}=\mathbb{Q}_{p}$ or $\mathbb{F}_{p}((z))$. The following elements form a basis for a torsion free discrete subgroup Γ of $\mathrm{PGL}_{2}(\mathfrak{K})$ such that \mathcal{T} / Γ is a complete regular graph of degree $p+1$:

$$
\alpha_{i}^{-1} \pi_{0} \alpha_{j-i+p+1}^{-1} \pi_{0} \alpha_{i-j} \pi_{0} \alpha_{j}
$$

for (i, j) with $0 \leq j<i \leq p$ and α_{i}, π_{i} are given in (3) and (4).

References

[1] Y. Benoist, Five lectures on lattices in semisimple Lie groups, Géométries à coubure négative ou nulle, groupes discrets et rigidité, Sémin. Congr. Soc. Math. France, Paris, 18 (2003), 117-176.
[2] Y. Ihara, On discrete subgroups of the two by two projective linear groups over \mathfrak{p}-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
[3] D. Jungnickel, Graphs, networks and algorithms, Fourth edition, Algorithms and Computation in Mathematics 5, Springer, Heidelberg, 2013.
[4] J. -P. Serre, Trees, Second edition, Translated from the French by J. Stillwell. Springer-Verlag, Berlin, 2003.
[5] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, New Jersey, 1970.

Department of Mathematics Education
Hongik University
Seoul 04066, Republic of Korea
E-mail: hchae@hongik.ac.kr

[^0]: Received March 28, 2018; Accepted February 01, 2019.
 2010 Mathematics Subject Classification: 05C25, 20 E 42.
 Key words and phrases: regular graph, tree, discrete subgroup.
 This work was supported by 2015 Hongik University Research Fund.

