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G-CW COMPLEX STRUCTURES OF PROPER

SEMIALGEBRAIC G-SETS

Seung-Ho Ahn and Dae Heui Park∗

Abstract. Let G be a semialgebraic group which is not necessarily
compact. Let X be a proper semialgebraic G-set whose orbit space
has a semialgebraic structure. In this paper we prove that X has a
finite open straight G-CW complex structure.

1. Introduction

A semialgebraic set is a subset of some Rn defined by finite number of
polynomial equations and inequalities. Throughout this paper we con-
sider the semialgebraic sets in Rn equipped with the subspace topology
induced by the usual topology of Rn. A continuous map f : X → Y be-
tween semialgebraic sets X ⊂ Rm and Y ⊂ Rn is called semialgebraic if
its graph is a semialgebraic set in Rm ×Rn. Note that all semialgebraic
maps are assumed to be continuous.

In this paper we discuss topological properties of semialgebraic sets
with semialgebraic actions of semialgebraic groups. Let X be a semial-
gebraic set and let G be a semialgebraic group which is not necessarily
compact. We say X is a semialgebraic G-set if the action θ : G×X → X
is semialgebraic. A semialgebraic G-set X is called proper if the associ-
ated action

ϑ∗ : G×X → X ×X, (g, x) 7→ (θ(g, x), x)

is proper. We remark that when G is compact, every semialgebraic G-set
is proper.

A fundamental question in transformation group theory is whether
a given G-space has a G-CW complex structure. Illman showed in [10]
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that a subanalytic space with proper action of a Lie group with the
compact orbit space has a G-CW complex structure. On the other
hand Park and Suh showed in [17] and [18] that a semialgebraic space
with a semialgebraic action of a compact Lie group has a finite open
G-CW complex structure. We extend this result to a semialgebraic set
with a proper semialgebraic action of a semialgebraic group which is not
necessarily compact. Namely, we have Theorem 3.6.

We remark that the stability under finite union is the wide difference
between semialgebraic category and the other (topological, subanalytic,
semi-analytic, or smooth) categories. For example, the infinite union
of locally finite semialgebraic sets is not a semialgebraic set. Thus the
attaching map of infinite semialgebraic maps, which are well-defined in
the intersections, is not semialgebraic in general.

2. Semialgebraic actions

In this section we gather some results about semialgebraic actions.
For more details, see [4, 5, 11, 14, 15, 16, 18].

The class of semialgebraic sets in Rn is the smallest collection of
subsets containing all subsets of the form {x ∈ Rn | p(x) > 0} for a
real valued polynomial p(x) = p(x1, . . . , xn), which is stable under finite
union, finite intersection and complement.

It is easy to see that finite unions and finite intersections of semialge-
braic sets are semialgebraic and that the complement of a semialgebraic
set is semialgebraic. Furthermore, the closure, and thus the interior,
of a semialgebraic set are semialgebraic. In addition, every connected
component of a semialgebraic set is semialgebraic and the family of the
connected components of a semialgebraic set is finite. For the general
theory of semialgebraic sets and semialgebraic maps, we refer the reader
to [1, 7].

The definition of a semialgebraic group is given obviously, i.e., a semi-
algebraic set G ⊂ Rn is called a semialgebraic group if it is a topological
group such that the group multiplication and the inversion are semi-
algebraic. A semialgebraic homomorphism between two semialgebraic
groups is a semialgebraic map that is a group homomorphism. If H is a
subgroup and semialgebraic subset of a semialgebraic group G, then H
is called a semialgebraic subgroup of G.

Proposition 2.1. (1) Every semialgebraic group has a Lie group
structure, and hence locally compact.



G-CW complex structures of proper semialgebraic G-sets 103

(2) Every semialgebraic subgroup of a semialgebraic group is closed.
(3) The normalizer N(H) of a semialgebraic subgroup H of a semi-

algebraic group G is also a semialgebraic subgroup of G.
(4) Let G be a semialgebraic group and H a semialgebraic subgroup

of G. If gHg−1 ⊂ H for some g ∈ G, then gHg−1 = H.

For (topological) proper actions the following proposition appears in
[8, Section 1.3] whose proofs are straightforward.

Proposition 2.2. Let X be a proper semialgebraic G-set and let
x ∈ X, then

(1) the isotropy subgroup Gx = {g ∈ G | g(x) = x} is compact and
semialgebraic,

(2) the orbit G(x) = {gx ∈ X | g ∈ G} is a closed semialgebraic
subset of X,

(3) the evaluation map θx : G→ X, g 7→ gx, is proper,
(4) the fixed point set XG = {x ∈ X | gx = x for all g ∈ G} is a

closed semialgebraic subset of X.

Let X be a proper semialgebraic G-set. If H is a semialgebraic sub-
group H of G, then the restriction ϑ∗| : H×X → X×X of ϑ∗ is proper;
hence X is a proper semialgebraic H-set. Moreover, if A is a G-invariant
semialgebraic subset of X, then the restriction ϑ∗| : G × A → A × A is
proper; hence A is also a proper semialgebraic G-set.

Working in semialgebraic category requires a lot of nontrivial efforts
to establish some of the properties which are easy or well-known in topo-
logical or smooth category. One of such properties is the existence of
semialgebraic structure on the orbit space of a semialgebraic G-set X.
Here is a natural question. Does there exist a semialgebraic structure
of the orbit space X/G in the natural sense? A semialgebraic structure
(N, f) of X/G is a semialgebraic set N ⊂ Rk together with a semialge-
braic map f : X → N which is topologically quotient map of X by G.
In this case we can substitute X/G and the orbit map π : X → X/G
with N and f respectively. Scheiderer [19] gave us a partially positive
answer of this question as follows.

Theorem 2.3 ([19]). Let X be a proper semialgebraic G-set which is
locally compact. Then the orbit spaceX/G has a semialgebraic structure
such that the orbit map π : X → X/G is semialgebraic.

When G is compact, this was proved by Brumfiel [3] without the
assumption that X is locally compact.



104 S.-H. Ahn and D. H. Park

As a specific example of a proper semialgebraic action, we consider
the following situation; let G be a semialgebraic group and H a semial-
gebraic subgroup of G. Then G can be seen as a proper semialgebraic
H-set where H acts by the right multiplication on G. Note that every
semialgebraic group is locally compact, hence that the quotient space
G/H has a semialgebraic structure.

We say two homogeneous semialgebraic G-sets are equivalent if they
are semialgebraically G-homeomorphic. Let (G/H) denote the equiva-
lence class of G/H. Moreover, the set of all equivalence classes of homo-
geneous semialgebraic G-sets has the natural partial ordering defined as
(G/K) ≤ (G/H) if there exists a semialgebraic G-map G/H → G/K.
Then (G/K) ≤ (G/H) if and only if H is conjugate to a subgroup of K.

When a homogeneous space X of G is equivalent to G/H, the conju-
gacy class (H) of H in G is called the isotropy type of X. For semialge-
braic subgroups H, K of G, a partial ordering ≤ is given by (H) ≤ (K)
if and only if (G/H) ≥ (G/K). For more details, see [2, 8].

Let X be a semialgebraic G-set. As the theory of Lie group actions,
the natural map

αx : G/Gx → G(x), gGx 7→ gx

is semialgebraic G-homeomorphism([18]). We define orbit type map from
X to the set of equivalence classes of homogeneous semialgebraic G-sets
by type(x) = (G/Gx). We call type(x) the orbit type of x. The following
theorem is one of the main results of [15].

Theorem 2.4 ([15]). Every proper semialgebraic G-set has only
finitely many orbit types.

For a semialgebraic G-set X and a semialgebraic subgroup H of G,
we set

X(H) = {x ∈ X | (Gx) = (H)}
= {x ∈ X | Gx = gHg−1 for some g ∈ G}.

Then X(H) is the set of points on orbits of type (G/H).

Corollary 2.5. Let G be a semialgebraic group and H a semialge-
braic subgroup of G, and X a proper semialgebraic G-set. Then X(H)

is a proper semialgebraic G-subset of X.

Proof. In fact, it is proved in [18, Proposition 2.8] when X has finitely
many orbit types. So it follows from Theorem 2.4.
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Let X be a proper semialgebraic G-set and H a semialgebraic sub-
group of G. Then XH is a proper semialgebraic N(H)-set by Proposi-
tion 2.2 where N(H) is the normalizer of H in G.

Remark 2.6 ([11]). For a semialgebraic subgroup H of G and a
proper semialgebraic G-set X whose orbit space has a semialgebraic
structure, the set

X(≥H) = {x ∈ X | (Gx) ≥ (H)}
= {x ∈ X | Gx ⊃ gHg−1 for some g ∈ G}

is a closed semialgebraic G-subset of X because X(≥H) = GXH . Since

(G/H) is the largest orbit type occurring in GXH , XH/N(H) has a
semialgebraic structure such that the inclusion j : XH ↪→ GXH induces
a semialgebraic homeomorphism j̃ : XH/N(H)→ GXH/G.

Let X be a G-space and H a closed subgroup of G. A subset S of
X is called H-kernel if there exists a continuous G-map f : GS → G/H
such that f−1(eH) = S, where e is the identity of G.

Proposition 2.7. Let X be a G-space and H a compact subgroup
of G. Let S ⊂ X be an H-kernel. Then the action map θ : G×S → GS
is proper.

Let G be a semialgebraic group and H a semialgebraic subgroup of
G. Let X be a semialgebraic G-set. A semialgebraic subset S of X will
be called a semialgebraic H-slice if GS is an open semialgebraic subset
of X and there exists a semialgebraic G-map f : GS → G/H such that
f−1(eH) = S. For x ∈ X a semialgebraic slice at x means a semial-
gebraic Gx-slice S in X such that x ∈ S. We call GS a semialgebraic
G-tube about G(x).

Theorem 2.8 ([11]). Let G be a semialgebraic group, and let X
be a proper semialgebraic G-set whose orbit space has a semialgebraic
structure. Then

(1) for each x ∈ X, there exists a semialgebraic Gx-slice S at x, and
(2) X can be covered by a finite number of semialgebraic G-tubes.

Moreover, we have the following properties.

• The map ϕ : G×Gx S → GS defined by [g, s] 7→ gs is a semialge-
braic G-homeomorphism.
• The map κ : S/Gx → GS/G defined by [s] 7→ [s] is a semialgebraic

homeomorphism.
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Note that the definition of a semialgebraic fiber bundle is analogous to
that of the bundles in other categories, except that we require finiteness
of the covering of locally trivial open sets in the semialgebraic category.

Theorem 2.9. Let X be a proper semialgebraic G-set with only one
orbit type. Suppose that X/G has a semialgebraic structure. Then the
orbit map π : X → X/G is a semialgebraic fiber bundle.

Proof. Since X has one orbit type (G/H), each tube has the form
G ×H S and H acts trivially on S, see the proof of Theorem 5.8 of
Chapter II of [2]. Therefore each tube defines a trivial bundle over S with
G/H as the fiber. By Theorem 2.8 X can be covered by finitely many
G-tubes. Hence π : X → X/G has a semialgebraic bundle structure.

Corollary 2.10. Let X be a proper semialgebraic G-set with only
one orbit type. Suppose that X/G has a semialgebraic structure. Then
the orbit map π : X → X/G is a semialgebraic fibration, that is, the
following commutative diagram can always be completed in the semial-
gebraic category.

Z × {0} //
� _

��

X

π

��
Z × I //

66

X/G

3. Semialgebraic G-CW complex structures

In this section we show that every proper semialgebraic G-set whose
orbit space is semialgebraic has a finite open G-CW complex structure.

Firstly, we deal with the semialgebraic triangulation of semialgebraic
sets. Let a0, . . . , an be generically independent points of Rm. The n-
simplex 〈a0, . . . , an〉 spanned by a0, . . . , an is defined by

〈a0, . . . , an〉 =
{ n∑
i=0

tiai ∈ Rm |
n∑
i=0

ti = 1, ti ≥ 0
}
.

The open n-simplex (a0, . . . , an) spanned by a0, . . . , an is defined by

(a0, . . . , an) =
{ n∑
i=0

tiai ∈ Rm |
n∑
i=0

ti = 1, ti > 0
}
.

Note that the open 0-simplex (a) is equal to 〈a〉 from the definition.
Clearly both 〈a0, . . . , an〉 and (a0, . . . , an) are semialgebraic sets in Rm.
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A finite open simplicial complex
(
K, {σi | i ∈ I}

)
is defined as a

subset of some Rm equipped with a partition {σi | i ∈ I} composed of
a finite number of open simplices σi in Rm, such that the intersection
σ̄i ∩ σ̄j of the closures of any two open simplices σi and σj is either
empty or a common face of σ̄i and σ̄j . Thus a finite open simplicial
complex K is obtained by deleting some open simplices from a “usual”
finite simplicial complex. The following theorem can be seen in many
places, for instance, [6, Section 2], [1, Chapter 9].

Theorem 3.1. Let X be a semialgebraic set, and let X1, . . . , Xk be
semialgebraic subsets of X. Then there exist a finite open simplicial
complex K and a semialgebraic homeomorphism τ : |K| → X such that
each Xi is a finite union of some of τ(σ), where σ is an open simplex of
K.

We call such (K, τ) a finite open semialgebraic triangulation of X
compatible with X1, . . . , Xk.

Definition 3.2. Let G be a topological group. An open G-CW
complex is a pair (X, {ci | i ∈ I}) of a Hausdorff G-space X and a
family of open G-cells ci such that

(1) the orbit space X/G is a Hausdorff space,
(2) for each open G-n-cell ci, there exist a subgroup Hci of G and

the characteristic G-map fci : G/Hci × δ → c̄i ⊂ X such that the

restriction fci | : G/Hci ×
◦
δ → ci is a G-homeomorphism and the

boundary ∂ci is equal to fci(G/Hci × ∂δ) where δ is a subset of
a compact standard n-simplex ∆n obtained by removing some

finite open lower dimensional faces of ∆n and ∂δ = δ −
◦
δ. Note

that
◦
δ = (∆n)◦. Moreover

(3) the closure c̄i of each open G-cell ci in X contains only finitely
many open G-cells, and

(4) X has the weak topology with respect to the closed covering {c̄i}
of X.

An open G-CW complex X is said to be finite if X has only a
finite number of open G-cells. To distinguish an open G-CW com-
plex from classical G-CW complex, we call the latter a complete G-
CW complex here. An open G-CW complex is straight if the restric-
tion fc|{eHc}×δ : {eHc} × δ → fc({eHc} × δ) of the characteristic map
fc : G/Hc × δ → c̄ for each open G-n-cell c of X is a homeomorphism.
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Usually in other categories (such as topological, subanalytic, semi-
analytic, or smooth) we can find ‘complete’ (possibly infinite) simpli-
cial or CW complex structures. But in the semialgebraic category we
can only obtain ‘finite open’ simplicial or CW complex structures. The
reason is that the semialgebraic category is not stable under infinite
union. For example, even if fi : Ai → X are semialgebraic for i ∈ I,
|I| =∞ such that fi = fj on Ai ∩Aj for all i, j ∈ I, the attaching map
∪fi : ∪Ai → X need not be semialgebraic.

We now construct a finite open straight G-CW complex structure of
a proper semialgebraic G-set. For this we need the following lemma.

Lemma 3.3 ([5, Lemma 3.2]). Let X be a semialgebraic set and A
a closed semialgebraic subset of X. Suppose that A is a semialgebraic
strong deformation retract of X. Then for a given semialgebraic neigh-
borhood U of A there is a closed semialgebraic neighborhood N of A
contained in U with a semialgebraic map ρ : X → U such that ρ(x) = x
for x ∈ N and ρ(X −N) ⊂ U −N .

Let δ be an n-dimensional simplex which is not necessarily closed.
Namely δ is obtained from a closed n-simplex by deleting some lower
dimensional open faces. A straight filtration of δ is a filtration

∅ = δ−1 ⊂ δ0 ⊂ δ1 ⊂ · · · ⊂ δn−1 ⊂ δn = δ

where δk is a face of δ which is closed in δ such that if δ0 = δ1 = · · · =
δk0−1 = ∅ but δk0 6= ∅, then dim δk = k for all k ≥ k0.

Lemma 3.4. Let G be a compact semialgebraic group. Let X be a
semialgebraic G-set with the orbit space X/G equals to an n-dimensional
simplex δ (which is not compact) with a straight filtration

δ0 ⊂ δ1 ⊂ · · · ⊂ δn = δ

such that π−1(δk − δk−1) has a constant orbit type for each 0 ≤ k ≤ n.
Then there is a semialgebraic section s : δ → X of the orbit map π : X →
X/G = δ such that s(δk − δk−1) has a constant isotropy subgroup for
each 0 ≤ k ≤ n.

Proof. We prove the lemma by the triple induction on n, on the
dimension of G, and on the number of components of G. By the in-
duction hypothesis we assume that there exists a semialgebraic section
s′ : δn−1 → π−1(δn−1) such that s′(δk − δk−1) has a constant isotropy
subgroup for each 0 ≤ k ≤ n− 1.

We first claim that X has a global slice, i.e., there exists a semialge-
braic G-map p : X → G/H where H is an isotropy subgroup of a point
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in π−1(δk0), and δk0 is the first nonempty stratum in the straight filtra-
tion of δ. We will construct p by constructing G-maps pk : π−1(δk) →
π−1(δk−1) for k0 + 1 ≤ k ≤ n and pk0 : π−1(δk0) → G/H. First
of all π−1(δk0) is a semialgebraic G-set of one orbit type. Therefore
π|π−1(δk0 ) : π−1(δk0) → δk0 has a semialgebraic fiber bundle structure

with G/H as the fiber, which is trivial because δk0 is contractible. Hence
we can find a semialgebraic G-map

pk0 : π−1(δk0)→ G/H.

To construct semialgebraic G-map pk : π−1(δk)→ π−1(δk−1) for k0 +
1 ≤ k ≤ n− 1, note that δk retracts into δk−1 semialgebraically. There-
fore s′(δk) retracts into s′(δk−1) semialgebraically, and this retraction in-
duces a semialgebraic G-retraction pk : π−1(δk)→ π−1(δk−1) for k0+1 ≤
k ≤ n−1. It remains to construct a semialgebraic G-map pn : π−1(δn)→
π−1(δn−1). Let Hn be the isotropy subgroup of a point in π−1(δn−δn−1),
then π−1(δn−δn−1) is a semialgebraic G-set with one orbit type (G/Hn).
By Theorem 2.9 π : π−1(δn−δn−1)→ δn−δn−1 has a semialgebraic bun-
dle structure, and since δn− δn−1 is contractible the bundle structure is
trivial. Therefore there exists a semialgebraic section s′′ : δn − δn−1 →
π−1(δn− δn−1). Moreover we can find s′′ so that its image s′′(δn− δn−1)

lies in π−1(δn − δn−1)Hn . Now let δ̃ be the closure of s′′(δn − δn−1) and

δ̃n−1 = δ̃ − s′′(δn − δn−1).

We now claim that there exists a semialgebraic retraction r̃ : δ̃ →
δ̃n−1. First triangulate δ̃ compatible with δ̃n−1 using Theorem 3.1 and

take its barycentric subdivision. Let Ũ be the open regular neighborhood

of δ̃n−1 in δ̃. Since Ũ is open and π is an open map, U = π(Ũ) is an
open semialgebraic neighborhood of δn−1 in δn. Obviously δn−1 is a
semialgebraic deformation retract of δn, we can apply Lemma 3.3 to find
a closed semialgebraic neighborhood N of δn−1 in U and a semialgebraic
map ρ : δn → U such that ρ(x) = x for x ∈ N and ρ(δn −N) ⊂ U −N .

Now define r′ : δ̃ → π−1(U) ∩ δ̃ = Ũ by

r′(x) =

{
s′′ ◦ ρ ◦ π(x), x ∈ δ̃ − π−1(δn−1)

x, x ∈ δ̃n−1.

Since ρ|N = id, s′′ ◦ ρ ◦ π(x) = s′′ ◦ π(x) = x for x ∈ π−1(N − δn−1) ∩ δ̃.
Therefore the map r′ is continuous. Since the regular neighborhood Ũ
has a semialgebraic retraction to δ̃n−1 the composition of r′ followed by
this retraction gives a semialgebraic retraction r̃ : δ̃ → δ̃n−1.
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Since any element in π−1(δ) is of the form gx for some g ∈ G and

x ∈ δ̃, the retraction r̃ induces a semialgebraic G-map pn : π−1(δn) →
π−1(δn−1), pn(gx) = gr̃(x) where x ∈ δ̃, because s′′(δn − δn−1) ⊂
π−1(δn − δn−1)Hn . Now let

p = pk0 ◦ pk0+1 ◦ · · · ◦ pn : X → G/H.

Then p is a semialgebraic G-map and hence we have shown that X has
a global slice.

Now a desired section s : δ → X is defined as follows: If H 6= G,
consider the slice S = p−1(eH). Then S is a semialgebraic H-set with
the orbit space S/H ∼= X/G. By the induction hypothesis, we can
find a semialgebraic section s : δ → S ⊂ π−1(δ) = X of the orbit map
S → S/H, and this section is a desired section.

On the other hand if H = G, then XG 6= ∅. Let X ′ = X−XG. Then
δ′ = δ − π(XG) is again a (non closed) simplex, and by the previous
argument of the case when H 6= G, we can find a semialgebraic section
s′ : δ′ → X ′ of the orbit map X ′ → X ′/G. We now define a semialgebraic
section s : δ → X by

s(x) =

{
s′(x), x ∈ δ′

π−1(x), x ∈ π(XG).

Obviously such defined s is continuous on δ′. In order to see that s is
continuous at y = π(x) for x ∈ XG, it is enough to show that for a given
open neighborhood U of x there exists a G-invariant neighborhood V of
x such that V ⊂ U . If we choose V = X − G(X − U) then, since G is
compact, G(X − U) is a closed subset of X and hence V is open. Thus
V is a desired open neighborhood of x.

Note that compactness of G is necessary to show the map s is con-
tinuous in the last part of the above proof. However we can extend the
previous lemma to proper actions of noncompact groups in the following
sense.

Lemma 3.5. Let G be a semialgebraic group, and let X be a proper
semialgebraic G-set whose orbit space X/G has a semialgebraic struc-
ture. Let {Xi} be a finite collection of G-invariant semialgebraic subsets
of X. Then there exists a finite open semialgebraic triangulation (K, τ)
of X/G compatible with {Xi/G} such that

(1) any simplex δ of K has a semialgebraic cross section sδ : δ → X
of the restriction of the orbit map π : X → X/G to π−1(δ).
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(2) The image sδ(δ) and its orbit G(sδ(δ)) are closed semialgebraic
subsets of X, and

(3) for each n-simplex δ of K, there exists a straight filtration δ0 ⊂
δ1 ⊂ · · · ⊂ δn = δ of δ such that sδ(δ

k − δk−1) has a constant
isotropy subgroup for each 0 ≤ k ≤ n.

Proof. By Theorem 2.4X has finitely many orbit types, say {(G/Hj)}.
Moreover by Theorem 2.8 X can be covered by a finite number of
semialgebraic G-tubes {Ul}. Therefore by Theorem 3.1 we can find
a semialgebraic triangulation (K, τ) of X/G compatible with {Xi/G} ∪
{X(≥Hj)/G} ∪ {Ul/G} such that π−1(δ) is contained in a semialgebraic
G-tube Ul for each simplex δ of K. We replace K by its barycentric sub-
division. Then for each simplex δ of K we can find a straight filtration
δ0 ⊂ δ1 ⊂ · · · ⊂ δn = δ such that π−1(δk− δk−1) has only one orbit type
for each 0 ≤ k ≤ n.

We now show that such K satisfies the conditions (1)-(3). Let δ be a
given simplex of K. Since π−1(δ) is contained in a semialgebraic G-tube
U of X, there exists a semialgebraic G-map f : U → G/H where H = Gx
for some x ∈ U . Since the G-action on X is proper, H is compact. Let
S′ = f−1(eH) be the slice of theG-tube U , and let S = S′∩π−1(δ). Then
GS and S are closed in X since GS = π−1(δ) and S = (f |GS)−1(eH).
Furthermore S is H-invariant and S/H = δ. Since H is compact, we
can apply Lemma 3.4 to the H-space S to get a semialgebraic section
sδ : δ → S of the orbit map πS : S → S/H = δ. The conditions (1) and
(3) directly follow from Lemma 3.4. Since sδ(δ) is closed in S, so is in
X. Moreover, since the action G×S → GS is proper by Proposition 2.7,
G(sδ(δ)) is closed in X, so the condition (2) is satisfied.

Theorem 3.6. Let G be a semialgebraic group, and let X be a
proper semialgebraic G-set whose orbit space X/G has a semialgebraic
structure. Let A be a closed semialgebraic G-subset of X. Then there
exists a pair (Y,B) of finite open straight G-CW complexes such that

(1) the underlying spaces Y and B are equal toX and A, respectively,
(2) Y/G is a finite open simplicial complex compatible with the orbit

types and A/G such that the orbit map πY : Y → Y/G is a
semialgebraic cellular map,

(3) each open G-cell c of Y is a semialgebraic G-set, and hence its
closure c̄ is also a semialgebraic G-set.

(4) for each open G-cell c of Y , the characteristic G-map fc : G/Hc×
δ → c̄ is semialgebraic whose restriction fci | : G/Hci ×

◦
δ → ci is

a semialgebraic G-homeomorphism,
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(5) for each open G-cell c of Y , the restriction πY |c̄ : c̄ → πY (c̄) has
semialgebraic section s : πY (c̄)→ c̄, and

(6) each n-simplex δ of Y/G has a straight filtration δ0 ⊂ δ1 ⊂ · · · ⊂
δn = δ such that s(δk − δk−1) has a constant isotropy subgroup
for each 0 ≤ k ≤ n.

In particular, if X is compact, we can take Y to be a complete finite
G-CW complex.

Proof. Let (K, τ) be a finite triangulation of X/G compatible with

orbit types and A/G as Lemma 3.5. Set σ = sδ(
◦
δ) for each simplex δ

of K, and also set c = G
◦
σ. From Lemma 3.5(2) and continuity of sδ

we can see that σ̄ = sδ(δ) and c̄ = Gsδ(δ). We define the characteristic
G-map fc : G/Hc×δ → c̄ by (gHc, x) 7→ gsδ(x), where Hc is the isotropy
subgroup of sδ(δ

n − δn−1). Then fc is semialgebraic. Let Y be the pair
(X, {c}). To show that it defines an open G-CW complex structure on
X, it is enough to check its topology, namely, we have to show that
X has the weak topology with respect to the closed covering {c̄} of X.
This follows from the fact that σ̄ = sδ(δ). The conditions (1)-(6) follow
easily from the construction.
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