East Asian Math. J. 21 (2005), No. 2, pp. 205–216

ON FUZZY DIMENSION OF N-GROUPS WITH DCC ON IDEALS

SATYANARAYANA BHAVANARI, SYAM PRASAD KUNCHAM, AND VENKATA PRADEEP KUMAR TUMURUKOTA

ABSTRACT. In this paper we consider the fuzzy ideals of N-group G where N is a near-ring. We introduce the concepts: minimal elements, fuzzy linearly independent elements, and fuzzy basis of an N-group G and obtained fundamental related results.

1. Introduction

We first recall some basic concepts for the sake of completeness. A non-empty set N with two binary operations + and . is called a *near-ring* if it satisfies the following axioms.

(i) (N, +) is a group (not necessarily abelian)

(ii) (N, \cdot) is a semi-group;

(iii) $(a + b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in N$.

Precisely speaking, it is a right near-ring because it satisfies the right distributive law. We denote ac instead of a.c. Moreover, a near-ring N is said to be *zero-symmetric* if n0 = 0 for all $n \in N$, where 0 is the additive identity in N. By an N-group, we mean an additively written group G (but not necessarily abelian), together with a mapping N \times G \rightarrow G (the image of (n, g) denoted by $n \cdot g$) satisfying the following conditions:

1. $(n_1 + n_2) \cdot g = n_1 \cdot g + n_2 \cdot g$ and

2.
$$n_1 \cdot (n_2 \cdot g) = (n_1 \cdot n_2) \cdot g$$
 for all $g \in G$, and $n_1, n_2 \in N$.

2000 Mathematics Subject Classification: 16A55, 03E72, 16Y30 .

Received September 18, 2005.

Key words and phrases: nearring, essential ideal, finite Goldie dimension, minimal element, DCCI, fuzzy l.i. elements, fuzzy basis.

Throughout, by a near-ring, we mean a zero-symmetric right nearring. N stands for a near-ring and G stands for an N-group. $\langle X \rangle$ denotes the ideal generated by X for a given subset X of G and $\langle a \rangle$ denotes $\langle \{a\} \rangle$.

Now we collect the necessary literature.

An ideal A of G is said to be *essential* in an ideal B of G (denote as, $A \leq_e B$ if I is an ideal of G contained in B and $A \cap I = (0)$ imply I = (0). In |14|, it is observed that (i) intersection of finite number of essential ideals is essential; (ii) For any ideals I, J, K of G such that I $\leq_e J$, and $J \leq_e K$, then $I \leq_e K$; and (iii) If $I \subseteq J$, then $I \leq_e J$ implies that $(I \cap K) \leq_e (J \cap K)$. An ideal A of G is said to be *uniform* if every non-zero ideal of G, which is contained in A, is essential in A. An element $0 \neq u \in G$ is said to be uniform element (or u-element) if $\langle u \rangle$ is a uniform ideal of G. The concept of finite Goldie Dimension in N-Groups was introduced by Reddy & Satyanarayana [5]. An ideal H of G is said to have *finite Goldie dimension* (abbr. FGD) if H does not contain an infinite number of non-zero ideals of G whose sum is direct. G has FGD if G does not contain a direct sum of infinite number of non-zero ideals. Equivalently, G has FGD if for any strictly increasing sequence $H_0 \subset H_1 \subset H_2 \subset \ldots$ of ideals of G, there is an integer i such that H_k is essential ideal in H_{k+1} for every $k \ge i$.

It is proved (in [5]) that if H_i , $K_i(1 \le i \le n)$ are ideals of G such that the sum of ideals $\{K_i \mid 1 \le i \le n\}$ is direct and $H_i \subseteq K_i$ for $1 \le i \le n$, then " $H_i \le_e K_i$, $1 \le i \le n \Leftrightarrow H_1 \oplus H_2 \oplus \ldots \oplus H_n \le_e K_1 \oplus K_2 \oplus \ldots \oplus K_n$ ". In [5], the authors also proved that if an ideal H of G has FGD, then there exists finite number of uniform ideals U_i , $1 \le i \le k$ of G whose sum is direct and essential in H. This number k is independent of choice of U_i 's and k is called the *Goldie Dimension* of H. In this case, we write $k = \dim H$.

For other preliminary definitions and results in near-rings, we refer [4,5, 6, 7, 10, and 11].

Next we collect necessary information related to fuzzyness from the existing literature.

The concept of fuzzy subset was introduced by Zadeh [15]. Later several authors like [12, 13, and 14] were studied the concept: fuzzyness in different algebraic systems, particularly in the theory of rings and near-rings.

We now review some fuzzy logic concepts. Let X be a non empty set. A mapping μ : X \rightarrow [0, 1] is called a fuzzy subset of X. We shall use the notation μ_t called a *level subset* of μ which is defined as $\mu_t = {x \in M \mid \mu(x) \geq t}$ where $t \in [0, 1]$. Let X and Y are two non empty sets and f a function of X into Y. Let μ and σ be fuzzy subsets of X and Y respectively. Then $f(\mu)$, the *image* of μ under f is a fuzzy subset of Y defined by

$$(f(\mu))(y) = \begin{cases} \sup_{f(x)=y} \mu(x) & \text{if } f^{-1}(y) \neq \phi \\ f(x)=y & \text{if } f^{-1}(y) = \phi \end{cases}$$

and $f^{-1}(\sigma)$, the *pre-image* of σ under f is a fuzzy subset of X defined by $(f^{-1}(\sigma))(\mathbf{x}) = \sigma(\mathbf{f}(\mathbf{x}))$ for all $\mathbf{x} \in X$.

2. Fuzzy Ideals of N-Groups

We start this section by defining the concept "fuzzy ideal" of an N-group G.

DEFINITION 2.1. [3] Let μ : G \rightarrow [0, 1] be a mapping. μ is said to be a *fuzzy ideal of* G if the following two conditions hold:

1. $\mu(g + g^1) \ge \min\{\mu(g), \mu(g^1)\},$ 2. $\mu(g + x - g) = \mu(x)$ 3. $\mu(-g) = \mu(g)$ 4. $\mu(n(g + x)-ng) \ge -\mu(x), \text{ for all } x, g, g^1 \in G, n \in N.$

If μ satisfies (i), (ii), and (iii), then we say μ , a fuzzy normal subgroup of G.

PROPOSITION 2.2. Let G be N-group with unity and $\mu: G \to [0, 1]$ is a fuzzy set with $\mu(ng) \ge -\mu(g)$ for all $g \in G$, $n \in N$, then the following two conditions are true.

(i) For all $0 \neq n \in N$, $\mu(ng) = \mu(g)$ if n is left invertible; and (ii) $\mu(-g) = \mu(g)$.

Proof. (i) Let n^1 be a left inverse of n. Then $n^1n = 1$. Now

 $\mu(ng) \ge -\mu(g) \ \mu(g) = \mu(1.g) = \mu(n^1 ng) \ge -\mu(ng)$ (by hypothesis) $\Rightarrow \mu(g) \ge \mu(ng)$. Hence $\mu(ng) = \mu(g)$ for all $g \in G$, and for all left invertible elements $0 \neq n \in N$.

(ii) Follows from (i) by taking n = -1.

COROLLARY 2.3. If μ is a fuzzy ideal of G and g, g¹ $\in G$, then $\mu(g - g^1) \ge \min\{\mu(g), \mu(g^1)\}.$

Proof. Given μ is a fuzzy ideal of G. Now $\mu(g - g^1) = \mu(g + (-g^1))$ $\geq \min\{\mu(g), \mu(-g^1)\}$ (since μ is a fuzzy ideal) $\geq \min\{\mu(g), \mu(g^1)\}$ (by the Proposition 2.2). Therefore $\mu(g - g^1) \ge \min \{\mu(g), \mu(g^1)\}$ for all $g, g^1 \in G.$ \Box

PROPOSITION 2.4. If μ is a fuzzy ideal of G, and g, $g^1 \in G$ with $\mu(g)$ $\mu(g^1)$, then $\mu(g + g^1) = \mu(g^1)$. In other words, if $\mu(g) \neq -\mu(g^1)$, then $\mu(g + g^1) = \min \{\mu(g), \mu(g^1)\}.$

Proof. By definition, $\mu(g + g^1) \ge -\mu(g^1)$.

Take $\mu(g^1) = \mu(g^1 + g \cdot g) \ge \min \{\mu(g^1 + g), \mu(-g)\} = \max \{\mu(g^1 + g)\} = \max$ g), $\mu(g)$ = $\mu(g + g^1)$ (by hypothesis) and so $\mu(g + g^1) = \mu(g^1)$.

COROLLARY 2.5. If $\mu: G \to [0, 1]$ is a mapping satisfies the condi- $\mu(g)$ for all $g \in G$ and $n \in N$, then the following two tion $\mu(ng) \geq 1$ conditions are equivalent:

1. $\mu(g - g^1) \ge \min\{\mu(g), \mu(g^1)\}; \text{ and}$ 2. $\mu(g + g^1) \ge \min\{\mu(g), \mu(g^1)\}.$

Proof. (i) \Rightarrow (ii): Suppose (i). Now $\mu(g + g^1) = \mu(g - (-g^1)) \ge$ min { $\mu(g), \mu(-g^1)$ } (by supposition) $\geq \min \{\mu(g), \mu(g^1)\}$ (by the given condition with n = -1). Therefore $\mu(g + g^1) \ge \min \{\mu(g), \mu(g^1)\}.$

(ii) \Rightarrow (i): follows from Corollary 2.3.

PROPOSITION 2.6. If $\mu: G \to [0, 1]$ is a fuzzy ideal, then (i) $\mu(0)$ $\mu(g)$ for all $g \in G$; and (ii) $\mu(\theta) = Sup \mu(g)$. \geq

208

Proof. (i) $\mu(0) = \mu$ (x - x) $\geq \min \{\mu(x), \mu(-x)\} = \mu(x)$ for all x in G.

(ii) Follows from (i).

The next part of this section deals with the concept "level ideals". A straightforward proof gives the following theorem.

THEOREM 2.7. [3] A fuzzy subset μ of G is a fuzzy ideal of $G \Leftrightarrow$ the level set μ_t is an ideal of G for all $t \in [0, \mu(0)]$.

DEFINITION 2.8. Let μ be any fuzzy ideal of G. The ideals μ_t , t \in [0, 1] where $\mu_t = \{ \mathbf{x} \in \mathbf{G} \mid \mu(\mathbf{x}) \geq \mathbf{t} \}$ are called *level ideals* of μ .

THEOREM 2.9. Let $I \subseteq G$. Define a fuzzy subset μ by

$$\mu(x) = \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{cases}$$

Then the following conditions are equivalent:

(i) μ is a fuzzy ideal; and

(ii) I is a ideal of G.

Proof. (i) \Rightarrow (ii): Let x, y \in I. Now $\mu(x) = \mu(y) = 1$. Now $\mu(\mathbf{x} - \mathbf{y}) \ge \min\{\mu(\mathbf{x}), \mu(\mathbf{y})\}$ (since μ is fuzzy ideal) $= \min\{1, 1\} = 1 \Rightarrow \quad \mu(\mathbf{x} - \mathbf{y}) \ge 1 \Rightarrow \mathbf{x} - \mathbf{y} \in \mathbf{I}.$

Let $x \in I$. Since μ is fuzzy normal, we have $\mu(y + x - y) = \mu(x)$ $y \in G$. Therefore $y + x - y \in I$ for all $y \in G$. Hence I is normal. Take $x \in I$, $g \in G$ and $n \in N$. Since μ is a fuzzy ideal of G, we have that

 $-\mu$ (x) = 1 and so n(g + x) - ng \in I. Hence I $\mu(n(g + x) - ng)) \geq 1$ is an ideal of G.

(ii) \Rightarrow (i): Let x, y \in G. If x, y \in I, then x - y \in I and so μ (x - y) $= 1 \ge \min \{1, 1\} = \min \{\mu(x), \mu(y)\}$. If $x \in I$ and $y \notin I$, then x - y \notin I and so $\mu(x - y) = 0 \ge \min \{1, 0\} = \min \{\mu(x), \mu(y)\}$. If $x \notin I, y$ \notin I, then $\mu(x - y) \ge 0 = \min \{\mu(x), \mu(y)\}.$

Take $x \in I$. Since I is an ideal of G, we have that $y + x - y \in I$ and so $\mu(y+x-y) = 1 = \mu(x)$. If $\mu(y+x-y) = 0$, then $y+x-y \notin I$ and so x \notin I.

This shows that $\mu(y + x - y) = 0 = \mu(x)$.

Take $x \in I$, $g \in G$ and $n \in N$. Since I is an ideal G, we have $n(g + x) - ng \in I$. Therefore $\mu(n(g + x) - ng) = 1 = \mu(x)$. If $x \notin I$, then $\mu(n(g + x) - ng) \ge 0 = \mu(x)$.

Thus (ii) \Rightarrow (i).

PROPOSITION 2.10. Let μ be a fuzzy ideal of G and μ_t , μ_s (with t < s) be two level ideals of μ . Then the following two conditions are equivalent:

(i) $\mu_t = \mu_s$; and (ii) there is no $x \in G$ such that $t \leq -\mu(x) < s$.

Proof. (i) \Rightarrow (ii): In a contrary way, suppose that there exists an element $x \in G$ such that $t \leq -\mu(x) < s$. Then $x \in -\mu_t$ and $x \notin -\mu_s$ and so $\mu_t \neq -\mu_s$, a contradiction. Hence we get (ii).

(ii) \Rightarrow (i): Since t < s we have $\mu_t \ge \mu_s$. Let $\mathbf{x} \in \mu_t \Rightarrow \mu(\mathbf{x}) \ge \mathbf{t}$. By given condition (ii), there is no y such that $\mathbf{s} > \mu(\mathbf{y}) \ge \mathbf{t}$ and so $\mu(\mathbf{x}) \ge \mathbf{s}$ which implies $\mathbf{x} \in \mu_s$. Thus $\mu_t \le \mu_s$.

3. Minimal Elements

We start this section by introducing the new concept "minimal element".

DEFINITION 3.1. An element $x \in G$ is said to be a *minimal element* if $\langle x \rangle$ is minimal in the set of all non-zero ideals of G.

THEOREM 3.2. If G has DCC on ideals, then every nonzero ideal of G contains a minimal element.

Proof. Let K be a nonzero ideal of G. Since G has DCC on its ideals, it follows that the set of all ideals of G contained in K has a minimal element. So K contains a minimal ideal A (that is, A is a minimal in the set of all non-zero ideals of G contained in K). Let $0 \neq a \in A$. Then $0 \neq \langle a \rangle \subseteq A$ and so $\langle a \rangle = A$. Since $\langle a \rangle$ is a minimal ideal, we have that 'a' is a minimal element. \Box

NOTE 3.3. There are N-Groups, which do not satisfy DCC on its ideals, but contains a minimal element. For this, we observe the following example.

210

EXAMPLE 3.4. Write N = Z, $G = Z \oplus Z_6$. Now G is an N-group. Clearly G has no DCC on its ideals. Consider $g = (0, 2) \in G$. Now the ideal generated by g, that is, $\langle g \rangle = Zg = \{(0, 0), (0, 2), (0, 4)\}$ is a minimal element in the set of all non-zero ideals of G. Hence g is a minimal element.

THEOREM 3.5. Every minimal element is an u-element.

Proof. Let $0 \neq a \in G$ be a minimal element. Consider Na. Let $(0) \neq L$ and I be ideals of G such that $L \subseteq \langle a \rangle$, $I \subseteq \langle a \rangle$ and $L \cap I = (0)$. Since $L \neq (0)$, $(0) \subseteq L \subseteq \langle a \rangle$, and a is minimal, it follows that $L = \langle a \rangle$. Now $I = I \cap \langle a \rangle = I \cap L = (0)$. This shows that L is essential in $\langle a \rangle$. Hence $\langle a \rangle$ is uniform ideal and so a is an u-element.

NOTE 3.6. The converse of Theorem 3.5 is not true. For this observe the following example given here.

Write G = Z, N = Z. Since Z is a uniform, and 1 is a generator, we have that 1 is an u-element. But 2Z is a proper ideal of 1.Z = Z = G. Hence 1 cannot be a minimal element. Thus 1 is an u-element but not a minimal element.

THEOREM 3.7. Suppose μ is a fuzzy ideal of G.

(i) If g ∈ G, then for any x ∈ <g> we have μ(x) ≥ μ(g); and
(ii) If g is a minimal element, then for any 0 ≠ x ∈ <g> we have μ(x) = μ(g).

Proof. (i) By straightforward verification, we conclude that for $g \in G$, $\langle g \rangle = \bigcup_{i=0}^{\infty} A_i$ where $A_{k+1} = A_k^* \cup A_k^+ \cup A_k^0$, $A_0 = \{g\}$ and $A_k^* = \{y + x - y \mid y \in G, x \in A_k\}$, $A_k^+ = \{n(y + x) - ny \mid n \in N, y \in G, x \in A_k\}$, $A_k^0 = \{x - y \mid x, y \in A_k\}$,

We prove that $\mu(y) \geq -\mu(g)$ for all $y \in A_m$ for $m \geq 1$. For this, we use induction on m. It is obvious if m = 0. Suppose the induction hypothesis for k. That is, $\mu(y) \geq -\mu(g)$ for all $y \in A_k$. Now let $v \in A_k^* \cup A_k^+ \cup A_k^0$. Suppose $v \in A_k^*$. Then v = z + y - z for some $y \in A_k$. Now $\mu(v) = \mu(z + y - z) \geq -\mu(y)$ (since μ is a fuzzy ideal of G) $\geq -\mu(g)$. Let $v \in A_k^0$. Then $v = y_1 - y_2$ for some $y_1, y_2 = A_k$. Now

 $\mu(\mathbf{v}) = \mu(\mathbf{y}_1 - \mathbf{y}_2) \ge \min \{\mu(\mathbf{y}_1), \mu(\mathbf{y}_2)\} \ge \mu(\mathbf{g}), \text{ by induction hypothesis.}$

Suppose $v \in A_k^+$. Then v = n(y + x) - ny for some $n \in N, y \in G$, $x \in A_k$. Now $\mu(v) = \mu(n(y + x) - ny) \ge -\mu(x)$ (since μ is a fuzzy ideal) $\ge -\mu(g)$ (by induction hypothesis). Thus in all cases, we proved that $\mu(v) \ge -\mu(g)$ for all $v \in A_{k+1}$. Hence by the principle of mathematical induction, we conclude that $\mu(v) \ge -\mu(g)$ for all $v \in A_m$ and for all positive integers m. We proved that $\mu(v) \ge -\mu(g)$ for all $v \in A_m$ and for all positive integers m. Hence $\mu(x) \ge -\mu(g)$ for all $x \in -g >$.

(ii) Let $g \in G$ be a minimal element. Let $0 \neq x \in \langle g \rangle$. Now $0 \neq \langle x \rangle \subseteq \langle g \rangle$. Since g is a minimal element, we have $\langle x \rangle = \langle g \rangle$. Therefore $g \in \langle x \rangle$ and by (i), we have $\mu(g) \geq \mu(x)$. Thus $\mu(x) = \mu(g)$.

NOTE 3.8. If G satisfies the descending chain condition on its ideals then we say that "G has DCCI". Let K be an ideal of G. If the set $\{J \mid J \text{ is an ideal of G}, J \subseteq K\}$ has the descending chain condition, then we say that K has DCC on the ideals of G (we write DCCI G, in short).

LEMMA 3.9. If x is a u-element in G and G has DCCI, then there exist minimal element $y \in \langle x \rangle$ such that $\langle y \rangle \leq_e \langle x \rangle$.

Proof. Consider the ideal $\langle x \rangle$. By Theorem 3.2, there exists a minimal element $y \in \langle x \rangle$. Since $\langle y \rangle$ is a non-zero ideal of $\langle x \rangle$, and $\langle x \rangle$ is uniform ideal, it follows that $\langle y \rangle \leq_e \langle x \rangle$.

DEFINITION 3.10. [11] (i) Let X be a subset of G. X is said to be a *linearly independent* (l. i., in short) set if the sum $\sum_{a \in X} \langle a \rangle$ is direct. If $\{a_i \mid 1 \leq i \leq n\}$ is a l. i. set, then we say that the elements a_i , $1 \leq i \leq n$ are *linearly independent*. If X is not an l. i. set then we say that X is a *linearly dependent* (l. d., in short) set.

(ii) A subset X of G is said to be u-linearly independent (u-l.i., in short) set if every element of X is an u-element and X is a l.i. set.

(iii) A l. i. set X in G is said to be an *essential basis* for G if $\sum_{a \in X} \langle a \rangle \leq_e G$. We also say that X forms an essential basis for G.

NOTE 3.11. [11]: (i) G has FGD \Leftrightarrow every l. i. subset X of G is a finite set.

(ii) Suppose that dim G = n and $X \subseteq G$. If X is a l. i. set, then we have: $|X| = n \Leftrightarrow X$ is a maximal l. i. set $\Leftrightarrow X$ is an essential basis for G.

THEOREM 3.12. If G has DCCI, then there exist linearly independent minimal elements x_1, x_2, \ldots, x_n in G where $n = \dim G$, and the sum $\langle x_1 \rangle + \ldots + \langle x_n \rangle$ is direct and essential in G. Also $B = \{x_1, x_2, \ldots, x_n\}$ forms an essential basis for G.

Proof. Since G has DCCI; by the Proposition 2.2 of [10], G has FGD. Suppose $n = \dim G$. Then by the Theorem 2.7 of [11], there exist u-linearly independent elements u_1, u_2, \ldots, u_n such that the sum $\langle u_1 \rangle + \ldots + \langle u_n \rangle$ is direct and essential in G. Since G has DCCI, by Lemma 3.9, there exist minimal elements $x_i \in \langle u_i \rangle$ such that $\langle x_i \rangle \leq_e \langle u_i \rangle$ for $1 \leq i \leq n$. Since u_1, u_2, \ldots, u_n are linearly independent, it follows that x_1, x_2, \ldots, x_n are also linearly independent.

Thus we have linearly independent minimal elements $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ in G where $\mathbf{n} = \dim \mathbf{G}$. Since $\langle \mathbf{x}_i \rangle \leq_e \langle \mathbf{u}_i \rangle$ by a result mentioned in the introduction, it follows that $\langle \mathbf{x}_1 \rangle \oplus \ldots \oplus \langle \mathbf{x}_n \rangle \leq_e \langle \mathbf{u}_1 \rangle$ $\oplus \ldots \oplus \langle \mathbf{u}_n \rangle \leq_e \mathbf{G}$ and so $\langle \mathbf{x}_1 \rangle \oplus \ldots \oplus \langle \mathbf{x}_n \rangle \leq_e \mathbf{G}$. Thus $\mathbf{B} = \{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n\}$ forms an essential basis for G.

4. Fuzzy Linearly Independent Elements

Now we introduce the concept of fuzzy linearly independent elements with respect to a fuzzy ideal μ of G.

DEFINITION 4.1. Let G be an N-group and μ be a fuzzy ideal of G. $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \in \mathbf{G}$ are said to be fuzzy μ -linearly independent (or fuzzy linearly independent with respect to μ) if it satisfies the following two conditions: (i) $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are linearly independent; and (ii) $\mu(\mathbf{y}_1 + \ldots + \mathbf{y}_n) = \min\{\mu(\mathbf{y}_1), \ldots, \mu(\mathbf{y}_n)\}$ for any $\mathbf{y}_i \in \langle \mathbf{x}_i, \rangle, 1$ $\leq i \leq n$.

THEOREM 4.2. Let μ be a fuzzy ideal on G. If x_1, x_2, \ldots, x_n are minimal elements in G with distinct μ -values, then x_1, x_2, \ldots, x_n are (i) Linearly independent; and (ii) Fuzzy μ -linearly independent.

Proof. The proof is by induction on n. If n = 1, then x_1 is linearly independent and also fuzzy linearly independent. Let us assume that the statement is true for (n - 1). Now suppose x_1, x_2, \ldots, x_n are minimal elements with distinct μ values. By induction hypothesis x_1 , x_2, \ldots, x_{n-1} are linearly independent and fuzzy linearly independent. If x_1, \ldots, x_n are not linearly independent, then the sum of $\langle x_1 \rangle$, $\langle x_2 \rangle, \ldots, \langle x_n \rangle$ is not direct. This means $\langle x_i \rangle \cap (\langle x_1 \rangle \oplus$ \ldots $< \mathbf{x}_{i-1} > \oplus$ $\langle x_{i+1} \rangle \oplus \ldots \oplus \langle x_n \rangle \neq \{0\}$. This implies $0 \neq y_i = y_1 + ... + y_{i-1} + y_{i+1} + ... + y_n$ where y_i \in $\langle x_j \rangle$ for $1 \leq j \leq n$. Now $\mu(x_i) = \mu(y_i)$ (by Theorem 3.7) $= \mu(y_1 + y_2)$ $\dots + y_{i-1} + y_{i+1} + \dots + y_n) = \min \{\mu(y_1), \dots, \mu(y_{i-1}), \mu(y_{i+1}), \dots \}$ $\{\mu(\mathbf{y}_n)\}\$ (by induction hypothesis) = $\mu(\mathbf{y}_k)$ for some $\mathbf{k} \in \{1, 2, \ldots, k\}$ i-1, i+1, ..., n} = $\mu(x_k)$ (by Theorem 3.7). Thus $\mu(x_i) = \mu(x_k)$ for $i \neq k$, a contradiction. This shows that x_1, x_2, \ldots, x_n are linearly independent.

Now we prove that x_1, x_2, \ldots, x_n are fuzzy linearly independent. Suppose $y_i \in \langle x_i \rangle, 1 \leq i \leq n$.

 $\begin{array}{l} \mu(\mathbf{y}_1 + \mathbf{y}_2 + \ldots + \mathbf{y}_{n-1}) = \min \left\{ \mu(\mathbf{y}_1), \ldots, \mu(\mathbf{y}_{n-1}) \right\} \text{ (by the induction hypothesis)} = \mu(\mathbf{y}_j) \text{ for some j with } 1 \leq \mathbf{j} \leq \mathbf{n} \cdot 1 = \mu(\mathbf{x}_j) \text{ (by the Theorem 3.7). Now } \mu(\mathbf{x}_j) \neq \mu(\mathbf{x}_n) \Rightarrow \mu(\mathbf{y}_1 + \mathbf{y}_2 + \ldots + \mathbf{y}_{n-1}) = \mu(\mathbf{x}_j) \neq \mu(\mathbf{x}_n) = \mu(\mathbf{y}_n) \Rightarrow \mu(\mathbf{y}_1 + \mathbf{y}_2 + \ldots + \mathbf{y}_{n-1} + \mathbf{y}_n) = \min \left\{ \mu(\mathbf{y}_1 + \ldots + \mathbf{y}_{n-1}), \mu(\mathbf{y}_n) \right\} \text{ (by Proposition 2.4)} = \min \left\{ \min \left\{ \mu(\mathbf{y}_1), \ldots, \mu(\mathbf{y}_{n-1}), \mu(\mathbf{y}_n) \right\} \right\} = \min \left\{ \mu(\mathbf{y}_1), \ldots, \mu(\mathbf{y}_n) \right\} \text{ or more that } \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \text{ are fuzzy linearly independent with respect to } \mu \text{ .} \end{array} \right.$

5. Fuzzy Dimension

We start this section by defining the concept "fuzzy pseudo basis".

DEFINITION 5.1. (i) Let μ be a fuzzy ideal of G. A subset B of G is said to be a *fuzzy pseudo basis* for μ if B is a maximal subset of G such that x_1, x_2, \ldots, x_k are fuzzy linearly independent for any finite subset $\{x_1, x_2, \ldots, x_k\}$ of B.

(ii) Consider the set $B = \{k \mid \text{there exist a fuzzy pseudo basis B} for <math>\mu$ with $|B| = k\}$. If B has no upper bound, then we say that the *fuzzy dimension of* μ is infinite. We denote this fact by S-dim (μ)

= ∞ . If B has an upper bound, then the **fuzzy dimension of** μ is sup B. We denote this fact by S-dim (μ) = sup B. If m = S-dim (μ) = sup B, then a fuzzy pseudo basis B for μ with |B| = m, is called as **fuzzy basis** for the fuzzy ideal μ .

PROPOSITION 5.2. Suppose G has FGD and μ is a fuzzy ideal of G. Then (i) $|B| \leq \dim G$ for any fuzzy pseudo basis B for μ ; and (ii) S-dim (μ) $\leq \dim G$.

Proof. Suppose $n = \dim G$.

(i) Suppose B is a fuzzy pseudo basis for μ . If |B| > n, then B contain distinct elements $x_1, x_2, \ldots, x_{n+1}$. Since B is a fuzzy pseudo basis, the elements $x_1, x_2, \ldots, x_{n+1}$ are linearly independent; and by Theorem 2.7 of [11], it follows that $n + 1 \leq n$, a contradiction. Therefore $|B| \leq n = \dim G$.

(ii) From (i) it is clear that dim M is an upper bound for the set $B = \{k \mid \text{there exist a fuzzy pseudo basis B for } \mu \text{ with } |B| = k\}.$ Therefore S-dim (μ) = sup B \leq dim G.

DEFINITION 5.3. An N-group G is said to have a *fuzzy basis* if there exists an essential ideal A of G and a fuzzy ideal μ of A such that S-dim (μ) = dim G. The fuzzy pseudo basis of μ is called as *fuzzy basis* for G.

REMARK 5.4. If G has FGD, then every fuzzy basis for G is a basis for G.

THEOREM 5.5. Suppose that G has DCCI. Then G has a fuzzy basis (in other words, there exists an essential ideal A of G and a fuzzy ideal μ of A such that S-dim (μ) = dim G).

Proof. Since G has DCCI, it has FGD. Suppose dim G = n. By Note 3.11, there exist linearly independent minimal elements x_1, x_2, \ldots, x_n such that $\{x_1, x_2, \ldots, x_n\}$ forms an essential basis for G. Take $0 \le t_1 < t_2 < \ldots < t_n \le 1$. Define $\mu(y_i) = t_i$ for $y_i \in \langle x_i \rangle$, $1 \le i \le n$. Then μ is a fuzzy ideal on $A = \langle x_1 \rangle + \langle x_2 \rangle + \ldots + \langle x_n \rangle \le e$ G. By the Theorem 4.2, x_1, x_2, \ldots, x_n are fuzzy μ -linearly independent. So $\{x_1, x_2, \ldots, x_n\}$ is a pseudo basis for μ . Now dim M = $n \le \sup B \le \dim G$ (by the Proposition 5.2) and hence S-dim (μ) = dim G. This shows that G has a fuzzy basis. \Box

Bhavanari, Kuncham, and Tumurukota

Acknowledgements

The first author is thankful to University Grants Commission, New Delhi for the financial support under the grant no. F.8-8/ 2004(SR). The second author acknowledges Manipal Academy Higher Education, Manipal for their kind encouragement.

REFERENCES

- Anderson F.W and Fuller K.R. "Rings and Categories of Modules", Springer-Verlag, New York, 1974.
- [2] Chatters A.W.& Hajarnavis C.R. "Rings with Chain Conditions", Pitman Pub. Ltd., 1988.
- [3] Helen K. Saikia " On Fuzzy N-Subgroups and Fuzzy ideals of Near-Rings and Near-Ring Groups", J. of Fuzzy Mathematics, 11(2003), 567-580.
- [4] Pilz G "Near-rings", North Holland, 1983.

216

- [5] Reddy Y.V. & Satyanarayana Bh. "A Note on N-groups", Indian J. Pure & Appl. Math., 19 (1988) 842-845.
- [6] Reddy Y.V. & Satyanarayana Bh. "Finite Spanning Dimension in N-Groups", The Mathematics Student, 56 (1988) 75-80.
- [7] Satyanarayana Bh., "Contributions to Near-Ring Theory", Doctoral Thesis, Nagarjuna Univ., 1984.
- [8] Satyanarayana Bh., "On Finite Spanning Dimension in N-groups", Indian J. Pure Appl. Math, 22 (1991) 633-636.
- [9] Satyanarayana Bh. and Syam Prasad K., A Result on E-direct Systems in N-groups, Indian J. Pure and Appl. Math. 29 (1998) 285-287.
- [10] Satyanarayana Bh. and Syam Prasad K., On Direct and Inverse systems in N-Groups, Indian Journal of Mathematics, Vol. 42, (2000) 183-192.
- [11] Satyanarayana Bh. and Syam Prasad K. "Linearly Independent Elements in N-Groups with Finite Goldie Dimension", Bull. Korean Math. Soc., Vol. 42 (2005)3, 433-441.
- [12] Satyanarayana Bh., Syam Prasad K. and Pradeep Kumar T.V., "On IFP N-Groups and Fuzzy IFP ideals", Indian J. of Mathematics, 46 (2004) 11-19.
- [13] Salah Abou-Zaid "On Fuzzy Subnear-rings and Ideals", Fuzzy sets and Systems, 4 (1991) 139-146.
- [14] Syam Prasad K. "Contributions to Near-ring Theory II", Doctoral Thesis, Acharya Nagarjuna University, 2000.
- [15] Zadeh L. A. "Fuzzy sets" Inform. & Control 8 (1965) 338-353.

Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar – 522 510, Andhra Pradesh, India. *E-mail*: bhavanari2002@yahoo.co.in

Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576 104, India *E-mail*: drkuncham@yahoo.com

Department of Mathematics, Gudlavalleru Engineering College Gudlavalleru, Andhra Pradesh, India