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Schur Multipliers and Cohomology of Finite Groups.
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Introduction

Throughout this note, We assume that (; is a finite Group and C is the field of all
complex numbers. Let V' be a finite dimensional vector space over . A projective repr-
esentation of G on V is a function T: G-»GL(V) such that

T(x) T(3)=T(xy) a (x,5,)
where X, y&G and a:G <G which is called the Factor set of T.
The purpose of this note is to prove by using “Extention theory of groups” that the

equivalence classes of factor sets on G is isomorphic to the second cohomology group of G.

§ 1. The Schur Multipliers

DEFINITION 1. Let us put C*==C--{0}. If a function a: ;<G --C* satisfies

alx,vz) aly,2)= alx,y) a (xy,2)
for all x,5,262G then a is called a factor set of G. For two factor sets a and § of G,
if there is a function C:G--C* such that a(x, y)=B(x.y) C(x) C(y) Clxy)™! for all x,¥
&G, then a and § are said to be equivalent, Written a~j.
1t is easy to prove that~is an equivalence relation.

LEMMA 2. If « is the factor set of a projective representation of (5, then e« is a

factor set of (.
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PROOF For x,y, 2z&=(;, since T(x) €&GL(») we have

TOT)T(2). TX)T(3)IT(2).
Since T'(DT(y)=alx, v)T(xy),

TOUTOIT(2) = T (al(y, 2)T (y2) =alx, y2)a(y, 2) T{xyz)

LT )IT (@) = a2, )T (x0T (2) = alx, v)alxy, 2)T(xyz)

oalx, y2aly, 2)=alx, ¥)alxy, 2).
Let Ty G--GL(V ) and Tyt G-GL(V,) be projective representations of (5. If there is
an U-Vector space isomorphism f: V-V, such that 7,(x)=C(x) f1T.()f for some
c(u)=C and all =G, then 7, and T, are said to be equivalent.

LEMMA 3. If two projective representations T, and 7; of G are equivalent, then

their factor sets are also equivalent.
PROOF. We compute T;(x) T:(y) in two way;

Ti(OT1 () = en(x, )T (xy) = an(x, ¥)eay) £ Te(xp)f,
and

Ty (3) = C) ST (x) F + To(3) FC(y)

=CC ST 0T (9) f
=CC(3) a2, y) I To(xy) S

Where ai(¢.21,2) is the factor set of 77 and f is a (-Vector space isomorphism, The-
refore,

a;(x, ¥) = az(x, YIC()C(PIC(xy) 1.
Let Mg be the set of all factor sets of . For a, 8eM;
We define (aB)(x,y)=alx,y)3(x,y) for all x, ye and define a tx,v)=aly, ¥y 1.
Then, if a~a' and f~3" we have af~a’f! and @'~ (a') L.
They are easily proved as follows:

a~a'Dalx,y) = a'(x,3)C(0)C(y)C (xy) N

BBl B(x,3) = B0k, »IC () Calay) +

(af)(x, y) = alx, ¥)B(x, 3) = a’ (%, 98" (2, y)C () C2()C:(3)C2(y)

‘ Cilay) 1Cu(xy)

= (a1 (x, ¥)C(x)C(¥)C(xy) !, where C{x) C;(x)Ca(x).

Therefore, af~a!fl. Also,

a~a'Dalx, y)=a’'(x,y)C(x)C(y)C{xy) !
Ta (X, y)=alx,y) T=al(x, ») 10 (x) C(y) T IC(xy)
=a’ T (x, y)CIC (y)C (xx) 7,

Where C'{(x)=C(x)"!, Hence, We have a™'~(a’) ’. Let us Put

—_— 4 4 -
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My Mg/~
Which is Called rthe Schur multiplicer of €.
LENMMA . Mg is a finite group.
PROOF, Let {(¢] be the number of all e¢lements in G
At first, we shall prove that for every {a}e=MelallG] -1,
Let a he a representative of {a}.

oa(x) - Il alx, 2).
yARY

Since alx, vialxy,z) walx, v2)aly, z) for x,v,2,620
We have

aly,y2laly,2)

alx,¥)= alxy, 2)

and thus
Coviel e @ty valv,z) 0 0u(x) 0.(v)
(e, )G T prpsae e

Where |1 vz (). Therefore, We have
LG

alx, G 1, )0 (00 (3)¢a(xy) ™
and thus

{a} |G)=={I}.
Where I: ()G -0* is defined by /{x,v) 1 for all x, v ¥, Next, we shall prove that
if {a}e = {1} (e 1GTY
there is a factor set a! of (¢ suchthat a'(y, v)e =1 and «'c{a}. Since {a}? ={I} there is
a function a:(; +C* such that

alx, y)aa(xaly)alxy)™.
We define a function b: G--»C* such that s(x)aCe) =1 for all xZ6G.
Define a'&:Ms by

a’ (x, v)==a(x, ¥)b(x)h(p)b{xy) ™ for all v, yes(.
Then

a’ (v, y) e alx, ¥)h(x)eb(ye)b{xy)

=a(x)a(y)a(ey) 1o alx) laly) lalxy) - 1.

Since the number of Gt roots of I are at most |G},
the above proofs say that { Mg is finite.
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It is clear that Af; is a multiplicative group.
Therefore Mg is a finite group.
8 2 The 2-dimensional Cohomology group of (.
DEFINITION 4. Let A be an abelian group and ¢ a group.

A group extension of A4 by (7 is a short exact sequence

ko
E:r 0AaR (7],

Where B and G are not necessary abelian groups and K, o group homomorphisms and K(A)
a normal subgroup of B.

For convenience, we shall write the group composition in B as addition. Let us Put
AutA=the group of automorphisms of A,

Then there is a homomorphism #:5 -»AutA which is defined by

6(b) K
Aev 2Aee B

W U o o
a0 (B)ann K (O (1)) = b+ K (@) b

for all #<=B. Since B is not abelian & - K(a)—b=b~b i k(a)-=0 By using this homomor-
phism 6 we can define a homomorphism ¢: G-»AutA with =¢ - g, That is, for a A
and =B
K (ololbai--b+ K(a) b
Thus, in F A is a G-module,and £ is an extension of A by (¢ with operator ¢ G—Aut A.
Note that b+ k(a@)—b €=K(A), simce K(A) is normal in B. Let AX, be the semi-direct
product of A and (7, That is, for (a,,4.), (@2, g2) €A, We have addition in A6
such that
(a,8:)+ (a2, g2) = (@, +¢(g,)2, £:82),
So Axe7 is not abelian, of course )
0 A s A Gl
W w W
(@, ) e, g) ~ g
is an extension of A by (/. We have to note that AxG, Axel and B(in £) are all
isomorphic as sets.
DEFINITION 5. Let E: O-A-B -4 -1 and E': O-+A-B;-»(G-+1 be two eéxtensions
of 4 by G.
By a morphism 1 F -»FE" we mean a triple [==(/4,8,15) of group homomorphisms such

that the diagram
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K 7
E:ondenB o G o]
oIy 3 L

Fiooo d 0B sG]
is commutative. By the short five lemma (/27) 8 must be an isomorphisny.
In this case, I I'(I4,5.1¢) is called a congruence, and thus each congruence has in-
verse. let us denote the set of all congruence classes of extensions of A by G with
operator ¢ by opext(A,e,G).
For convenience, Let us put

Kia)y-a, o(x)a xa
for a=4 and 263G in E. For each x3=(; we take an element {'(x) in ¢ '(x). Then, from
K{{po U(x)Da" Ulx)+K(a) -1’ (x) we have

xa < U{x)=a+1(x).
On the other hand, for x, y¢3Q o U(X) +L/(y) xy and thus U(x) +U(y) is contained
in ¢ "xy). Therefore, there exists an element fp(x, ¥) of A such that

Ux) -+ UCy) =Sz, y)+U(xp)e (%)
Since (o) =, We have U(I) - 0 and also

Se(X, D= 0=Fell,y), x,¥836G (%)
Then, fu: G «<(-A satisfies the following;

(i) For x,y,2=0

xS eCy, 2) 4 fe(a, va) = e, v) + /ey, 2) (¥%)

(i1) If we take an other element U7 (x) in o /(X),

then for x,y,2¢20¢

Ju' (x,y)=0g{x, ¥y felx ),
Where

(Bg) (%, ) =xg(y) ~gley) +g(x), ¥,y G ()
and g:G A is a function.

(i) If J: GoG-»A satisfies(*)’ and (**) then J is called a fator set of(4,¢,G). We
denote by IV the set of all factor sets of(4,¢,0). For /,/ ¢5F if there is a function dg:
G4 satisfying(***) such that /7 (x,Y) = dg(x, y) S (x,¥)
then /" and f7 are said ro be isomorphic, written /~J". Then~1is an equivalence relation.
We put &= F/~
The above function fx: (G ->A in (*) is a {actor set of (A,@,0).

LENMMA 6. As sets, F and Opext (A,¢,G) are isomorphic.

— 4T
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PROOF, For each {f} =/ We can Conxtruct an extension
0O oA A G G
|

) U ,
a (a, ) U ¥

(a, x)v~-X

of A by & as follows, For #(x)=(a,x), U{y)= (b, ¥)(a,be=4, x, v¢=G) define the follow-
ing:

() U(xy)=(ai-xb, xv)

b)) L (x)+U(y)=(atxb -1 xvi,xy)
Then, by(*)’ and(**) We have

0,1+ (a, X))+ (a,X)+ (0,1 =(a, x)

Uy U140 @) =U(x) + U +U )T,
and for =4 with xb— -2 we have also

(a,x)H (b, x D= (b,x D 4-(a,x)=(0,1

(Note that ~xa= b rxb——a),

Then A3 6 is a group AXG with the above abbition(f).

E: oA G001,

FE o oA A G-l 1
of A by ;. We define a mapping

B: AX.G o AXG

) b .
a U (a)~ma - g(a) -+ U (x)

Where g: G- is a function (Note that each element of 4,4 can be represented uni-
quely as a+U(x) for a==4 and x=(r).
Since U{x)+a—=xa-U/(x) We have

Bla+li(x)) + (b U(9))a-abi (e, 3) +g(ay) + U/ (xy).

Ba-tli(x))+B(b-+U(x)) ~a - g(x) +ab-+-xg(v) +f (2, ¥) +U" (xp).
By (**)

Blat+u(x))+ B+ U(x)) =B (a4 U{x)) -+ (b+U(3))]

and thus 8 is a homomorphism, Define
g7 Avigli A
a }~7z)¢1(x)w~~—-+r1~~g'(x)"}'[7(1'),
then B! is a homomorphism and g/f=74> (. Therefore, 3 is an isomorphism and £’ is
in the congruence class belonging to £7. Similary, We can prove that if I't E-»F’ isa
congruence then fe~fg’, where [z is the factor set of K and fr” the factor setof /77, In
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consequence, we proved that F and opext (A4,¢,G) are isomorphic as sets.

DEFINITION 7. For {f}, {f’} &F we define
{fy+={ry={r+r"1,
where (f+f")(x,Y)=f(x,3)+f (x,y) for all(x, y) GG,
Then F becomes an abelian group. Since F=Opext(Z,¢,G) (as sets), by the abelian
group F we can introduce on Opext(4,®,G) the structure of abelian group, Therefore,
Lemma 6 says that F==Opext(4,9,G) as abelian groups, we put
OPext(4,¢,G)=H>*(G,A),
which is called the 2-dimensional cohomology group of G with respect to A and ¢.
An extension of C* by G is a short exact sequence
E: [-C*-»B-(G-].
where B is a multiplicative group and the action of (G on C* is trivial,
f.e, V7eEC* and Vax &G xy=7. We put
IC*: (¢ ~—A*A’1‘1t C*

and also Opext (C*,15,G)=H*G,C*)
THEOREM 8. Me=H?*(G,C*)

PROOF. In Definition 5, We see that Ms==F Using multiplication instead of addition
(refer Deflnitionl), When
E: I—oC*-sB ——oG——0
PRV, N A
{'==TC* B,Ic): E—E’ is a congruence. of course
Opext (C*,1¢,G)=the set of all congruence classes of extensions Of C* by  with
operator Ig.
By Lemma 6, as abelian groups F==Opext(C*,1,G)=H*(G,(*).
Thus, We proved that Me=H?*(G,C*).
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