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ON IRREDUCIBILITY OF INDUCED MODULES AND AN

ADAPTATION OF THE WIGNER–MACKEY METHOD OF

LITTLE GROUPS

Geetha Venkataraman

Abstract. This paper deals with sufficiency conditions for irreducibility
of certain induced modules. We also construct irreducible representations
for a group G over a field K where the group G is a semidirect product of
a normal abelian subgroup N and a subgroup H. The main results are
proved with the assumption that charK does not divide |G| but there is
no assumption made of K being algebraically closed.

1. Introduction

In this paper G is a finite group and K is an arbitrary field unless stated
otherwise. We shall also assume that the KG-modules referred to here are finite
dimensional over K and that these modules are left KG-modules. For proofs
of well known theorems that are used here and terminology, see [1] or [3].

Mackey [4] proved results about necessary and sufficient conditions for the
irreducibility of induced modules. A crucial assumption was that the field over
which the representations occur be algebraically closed.

We show in this paper that when the condition of the base field being an al-
gebraically closed field is dropped then the sufficiency condition for the induced
module to be irreducible still holds. We prove the following.

Theorem 3.1. Let G be a finite group and let K be a field such that charK
does not divide |G|. Let H be a subgroup of G and let L be an irreducible

KH-module. For x ∈ G, let H(x) = xHx−1 ∩H. If for all x 6∈ H, the KH(x)-

modules, LH(x) and (x⊗L)H(x) are disjoint (that is, they have no composition

factors in common), then LG is an irreducible KG-module.

The other topic dealt with in this paper follows the same approach as the
method of little groups of Wigner and Mackey (see [5, pp. 62–63]). Let G be a
finite group which is a semidirect product of a normal abelian subgroup N by
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H . Let K be an algebraically closed field such that charK does not divide |G|.
Then the method of little groups shows how the irreducible representations of
G over K can be constructed from those of certain subgroups of H .

Note that since K is algebraically closed and since N is abelian, all its
irreducible representations are of degree 1. Mackey’s irreducibility criterion
is used in the method of little groups to prove the irreducibility of certain
induced modules and so K being algebraically closed is essential in Wigner–
Mackey method of little groups for constructing the irreducible representations
of G.

Using Theorem 3.1 stated above, we are able to follow the same proof as
in the Wigner–Mackey method of little groups to get a classification of irre-
ducible representations of G except that the field K is no longer required to
be algebraically closed. However we do need the condition that all irreducible
representations of N are of degree 1. If we drop this last condition, then we can
classify all irreducible KG-modules which have a one-dimensional composition
factor when restricted to N . These results are presented as Theorems 4.1 and
4.2.

This paper is organised as follows. In Section 2, we present the preliminary
results required for the proofs of our main results. Some well know theorems
that are required for their proofs are also stated in this section. In the third
section we present our main result on irreducibility of induced modules and
the corollaries following from it. Section 4 deals with applications of Theorem
3.1, namely, the results following from our adaptation of the Wigner–Mackey
method of little groups.

2. Intertwining number

We begin by establishing some definitions and notations.
For an arbitrary associative ring R, and R-modules M and N we denote by

HomR(M,N) the additive group consisting of all R-homomorphisms from M

to N .

Definition 2.1. Let M and N be KG-modules. Then HomKG(M,N) is a vec-
tor space over K, and its dimension is called the intertwining number i(M,N)
of M and N .

Some basic properties of the intertwining number are stated below. All parts
are easy to prove.

Remark 2.1. Let M , N , Mi, Ni, i = 1, 2 be KG-modules. Then

(a) i(M1 ⊕M2, N) = i(M1, N) + i(M2, N).
(b) i(N,M1 ⊕M2) = i(N,M1) + i(N,M2).
(c) If M and N are completely reducible as KG-modules, then i(M,N) =

i(N,M).
(d) Let M and N be irreducible KG-modules. Then i(M,N) = 0 if and

only if M 6∼= N as KG-modules.
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(e) If M 6= 0, then i(M,M) 6= 0. Further if dimension of M over K is 1,
then i(M,M) = 1.

(f) Let M and N be completely reducible KG-modules. Then M and N

are disjoint if and only if i(M,N) = 0. (The modules M and N are
said to be disjoint if they have no composition factor in common.)

We use two well known theorems in the proof of our main results and the
statements of these are presented below.

The following is the statement of the Frobenius Reciprocity Theorem (FRT)
for KG-modules. (For a proof of this result, see [2, pp. 232–233].)

Theorem (FRT). Let H be a subgroup of G. Let V be a KG-module and let

W be a KH-module. Then

HomKG(W
G, V ) ∼= HomKH(W,VH) .

The statement of the Intertwining Number Theorem (INT) is presented
below. (For a proof of this result, see [1, p. 327].)

Theorem (INT). Let H1 and H2 be subgroups of G and let Li be KHi-modules

for i = 1, 2. Let (x, y) ∈ G ×G. Set H(x, y) = xH1x
−1 ∩ yH2y

−1. Further let

L1
(x) := x⊗ L1 ⊆ L1

G and let L2
(y) := y ⊗ L2 ⊆ L2

G. Then

(i) L1
(x) and L2

(y) are KH(x, y)-modules.

(ii) The intertwining number i(L1
(x), L2

(y)) of the KH(x, y)-modules de-

pends only on the (H1, H2)-double coset D to which x−1y belongs and

will be denoted as i(L1, L2, D).

(iii) i(L1
G, L2

G)=
∑

D i(L1, L2, D) where the sum is taken over all (H1, H2)-
double cosets D in G.

3. Irreducibility of induced modules

We prove a result required for the proof of our main theorem.

Proposition 3.1. Let H be a subgroup of a finite group G. Let K be a field such

that charK does not divide the order of G. Let L be an irreducible KH-module.

If i(LG, LG) = i(L,L), then LG is an irreducible KG-module.

Proof. Let i(LG, LG) = i(L,L) and let LG = ⊕s
j=1Mj be the decomposition of

the completely reducible KG-module LG into irreducible KG-modules. Then
(LG)H = ⊕s

j=1(Mj)H as KH-modules.
By FRT, for j = 1, . . . , s, we have,

HomKG(L
G,Mj) ∼= HomKH(L, (Mj)H) .

So, i(LG,Mj) = i(L, (Mj)H) and hence i(L, (Mj)H) 6= 0 for j = 1, . . . , s.
Therefore using Remark 2.1 and the above fact, for any j = 1, . . . , s, there

is an irreducible KH-submodule of Mj which is isomorphic to L. Hence for all
j = 1, . . . , s,

i(L, (Mj)H) ≥ i(L,L) .(1)
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By FRT we have,

HomKG(L
G, LG) ∼= HomKH(L, (LG)H) .

Thus by the above isomorphism, Remark 2.1, part (b) and (1), we get

i(L,L) = i(LG, LG)

= i(L, (LG)H)

=

s∑

j=1

i(L, (Mj)H)

≥ s i(L,L) .

Consequently we must have s = 1, and so LG is irreducible. �

Now we are in a position to present our main result.

Theorem 3.1. Let G be a finite group and let K be a field such that charK does

not divide |G|. Let H be a subgroup of G and let L be an irreducible KH-module.

For x ∈ G, let H(x) = xHx−1 ∩H. If for all x 6∈ H, the KH(x)-modules, LH(x)

and (x⊗ L)H(x) are disjoint, then LG is an irreducible KG-module.

Proof. By INT we have that

(2) i(LG, LG) =
∑

D

i(L,L,D),

where the sum is taken over all (H,H)-double cosets D in G.
Note that i(L,L,D) = i(L(x), L(y)) for some x−1y ∈ D, where L(x) and L(y)

are H(x, y) modules over K and H(x, y) = xHx−1 ∩ yHy−1. If we take y = 1,
then H(x, y) = H(x). So L(y) = LH(x) , x−1 ∈ D and i(L,L,D) = i(L(x), LH(x)).

For the double coset D = H , we can take x = 1 and in this case we get
H(x) = H and so

(3) i(L,L,H) = i(L,L) .

For any other double coset D different from H , if x−1 ∈ D, then x−1 6∈ H

or equivalently x 6∈ H . But then we are given that (L(x))H(x) and LH(x) are

disjoint as KH(x)-modules. So for D 6= H , using Remark 2.1, we can show
easily that

i(L,L,D) = i((L(x))H(x) , LH(x))

= 0 .(4)

Substituting the values of the intertwining numbers given in (3) and (4), in
equation (2), we have

i(LG, LG) = i(L,L,H) +
∑

D 6=H

i(L,L,D)

= i(L,L) .
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So by Proposition 3.1 the induced module, LG is irreducible as a KG-module.
�

Before we present the corollaries arising from the above theorem, we have
the following remark.

Remark 3.1. From the proof of the above theorem it is easy to see in fact that
i(LG, LG) = i(L,L) if and only if for all x 6∈ H , the KH(x)-modules, LH(x) and
(x⊗ L)H(x) are disjoint.

On the other hand, while the equivalent conditions given above are sufficient
for LG to be irreducible, they are not necessary. A simple example to show
that this condition is not necessary is the following.

Let G be the cyclic group of order 4 and let H be the unique subgroup of
order 2. Let K be the field of three elements and L be the only non-trivial irre-
ducible KH-module of dimension 1. Then we can show that LG is irreducible
and that i(LG, LG) = 2 = 2 i(L,L).

We have the following corollaries to the above theorem.

Corollary 3.1. Let H be a normal subgroup of a finite group G. Let K be a

field with charK not dividing |G| and let L be an irreducible KH-module. If

for all x 6∈ H, the KH-modules, LH and x ⊗ L are disjoint, then the induced

module LG of G is irreducible.

Proof. SinceH(x) = H in this case the proof is a direct consequence of Theorem
3.1. �

The above result is a particular case of the more general result given below.

Let N be a normal subgroup of an arbitrary group G, let R be a commutative

ring and let V be an irreducible RN -module. If g ⊗ V 6∼= V for all g ∈ G \N ,

then V G is irreducible. (See [3, p. 96] for a proof.)

Corollary 3.2. Let H be a subgroup of a finite group G. Let K be a field with

charK not dividing |G| and let ρ be a one-dimensional representation of H. If

for each x 6∈ H, there exists y ∈ xHx−1 ∩H such that ρ(y) 6= ρ(x−1yx), then
the induced monomial representation ρG of G is irreducible.

Proof. Let L be a KH-module which affords ρ. For any x ∈ G, let ρx be the
representation of xHx−1 that is given by ρx(g) = ρ(x−1gx) for all g ∈ xHx−1.
Let us denote by Lx the KxHx−1-module which affords ρx. Note that the
underlying vector space for the module Lx is L itself. It is obvious that L and
Lx are irreducible, as their dimension over K is 1.

It is given that for x 6∈ H , there exists y ∈ xHx−1 ∩H =: H(x), such that
ρ(y) 6= ρ(x−1yx). So there exists y ∈ H(x) such that ρ(y) 6= ρx(y) or equiva-
lently we have that for all x 6∈ H , the one-dimensional representations ρ and
ρx restricted to H(x) are not equal. Since they are one-dimensional represen-
tations, we get that they are not equivalent. In terms of modules, all this is
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saying is that the KH(x)-modules, LH(x) and (Lx)H(x) are non-isomorphic. It is
easy to see that x⊗L and Lx are isomorphic as KxHx−1-modules. Thus what
we have is that the KH(x)-modules, LH(x) and (x⊗ L)H(x) are not isomorphic.
Since the modules involved are irreducible, being non-isomorphic is the same
as being disjoint. So we have shown the following.

For all x 6∈ H , the KH(x)-modules, LH(x) and (x⊗ L)H(x) are disjoint. So
by Theorem 3.1, the induced module LG is irreducible as a KG-module or
equivalently the induced monomial representation ρG of G is irreducible. �

We end this section by mentioning a theorem which is a test for isomorphism
of induced modules.(For a proof of this theorem see [3, p. 94].) This result will
be used in the proof of the main theorem presented in the next section.

Theorem 3.2. Let H1 and H2 be subgroups of a finite group G and let Li be

KHi-modules for i = 1, 2, where K is a field such that charK does not divide |G|.

Further let (Li)
G

be irreducible as KG-modules and let H(x) := xH1x
−1 ∩H2.

Then (L1)
G

and (L2)
G

are not KG-isomorphic if and only if, for all x ∈ G,

the KH(x)-modules, x⊗ L1 and L2 are disjoint.

4. An adaptation of the Wigner–Mackey method of little groups

For any group G and a field K, let IrrK(G) denote the set of all irreducible
representations of G over K up to isomorphism. The set of all one dimensional
representations of G over K forms an abelian group and will be denoted as G̃.

Let N be a normal subgroup of a group G. Then G acts on Ñ as follows:
given χ ∈ Ñ , g ∈ G, for all a ∈ N , we have χg(a) = χ(g−1ag).

In this section we shall present a classification of irreducible representations
of a finite group G over a field K with respect to the conditions given below.

(i) charK does not divide |G|.
(ii) G is a semidirect product of a normal abelian subgroup N by a sub-

group H .
(iii) All irreducible representations of N over K have degree 1.

We also present a result which deals with constructing irreducible represen-
tations of G but without the imposition of condition (iii). This result gives
a classification of all irreducible KG-modules which have a one-dimensional
composition factor when restricted to N .

Let us assume that condition (ii) mentioned above holds. We know that G

acts on Ñ as follows: given χ ∈ Ñ , g ∈ G, for all a ∈ N , we have χg(a) =
χ(g−1ag). We shall denote by Iχ the stabiliser of χ in G. Note that since N is
abelian, we have that N ≤ Iχ.

Let Hχ := Iχ ∩H . Then it is fairly obvious that Iχ is a semidirect product

of N by Hχ. It can be shown quite easily that any χ ∈ Ñ can be extended to a
homomorphism from Iχ to K

∗, the multiplicative group of the field K, in such
a way that this extended homomorphism is the trivial map when restricted to
Hχ. So now we can regard χ as an element of Ĩχ.
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Further if ρ is a representation of Hχ over K and the canonical projection of
Iχ on Hχ is composed with ρ, then we get a representation of Iχ. Thus we can
form the tensor product representation χ⊗ ρ of Iχ. It is easy to show that if ρ
is irreducible, then the tensor product representation χ ⊗ ρ is also irreducible
and deg(χ⊗ ρ) = deg ρ.

We are now in a position to state and prove our classification theorems.

Theorem 4.1. Let G be a finite group which is a semi-direct product of an

abelian group N by a subgroup H. Let K be a field such that charK does not

divide |G| and let all irreducible representations of N over K be of degree 1.

Let O1, . . . , Ot be the distinct orbits under the action of G on Ñ and let χj

be a representative of the orbit Oj. Let Ij denote the stabiliser of χj and let

Hj := Ij ∩ H. For any irreducible representation ρ of Hj, let θj,ρ denote the

representation of G induced from the irreducible representation χj ⊗ ρ of Ij.

Then

(i) θj,ρ is irreducible.

(ii) If θj,ρ and θj′,ρ′ are isomorphic, then j = j′ and ρ is isomorphic to ρ′.

(iii) Every irreducible representation of G is isomorphic to one of the θj,ρ.

Proof. Let Wρ be a KHj-module affording the representation ρ. Let Wj,ρ :=
Vj ⊗ Wρ where Vj is a one-dimensional representation space for Ij affording
the character χj . Then we may regard Wj,ρ as a KIj-module affording the

irreducible tensor product representation χj ⊗ ρ. So (Wj,ρ)
G

is a KG-module
affording θj,ρ.

For part (i) it is sufficient to show that (Wj,ρ)
G is irreducible as a KG-

module. By Theorem 3.1, it is sufficient to show that for any x 6∈ Ij and for

Ij
(x) := xIjx

−1 ∩ Ij , the KIj
(x)-modules Wj,ρ and x⊗Wj,ρ are disjoint.

Suppose for some x 6∈ Ij , we have that the KIj
(x)-modulesWj,ρ and x⊗Wj,ρ,

have a composition factor in common. Then if we further restrict these modules

to the subgroup N of Ij
(x), we must have that as KN -modules, Wj,ρ and

x⊗Wj,ρ have a composition factor in common.
Now for any w ∈ Wj,ρ and a ∈ N , let a · w denote the action of a on w.

Then it is easy to see that a · w = χj(a)w. So it is obvious that irreducible
KN -submodules of the KN -module Wj,ρ are one dimensional and afford the
character χj. Similarly we can show that irreducible KN -submodules of the
KN -module x⊗Wj,ρ are one dimensional and afford the character χj

x.
Since x 6∈ Ij , we have that χj 6= χj

x. So the KN -modules, Wj,ρ and x⊗Wj,ρ

cannot have a composition factor in common. Therefore our assumption that

the KIj
(x)-modules Wj,ρ and x⊗Wj,ρ, have a composition factor in common is

false. Hence by Theorem 3.1 we have that (Wj,ρ)
G is irreducible or equivalently

that θj,ρ is irreducible.
For part (ii), let us assume that θj,ρ and θj′,ρ′ are isomorphic. As in the

previous part, we shall assume that the KIj-module Wj,ρ and the KIj′ -module
Wj′,ρ′ afford the representations χj ⊗ ρ and χj′ ⊗ ρ′ respectively. We are given
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that the irreducible induced modules (Wj,ρ)
G

and (Wj′,ρ′)
G

are isomorphic as
KG-modules.

By Theorem 3.2, we have that for some x ∈ G, the K(xIjx
−1 ∩ Ij′ )-modules

x ⊗Wj,ρ and Wj′,ρ′ have a composition factor in common. By restriction we
can consider both these modules as KN -modules and they will still have a
composition factor in common. But then as in the previous part, we shall get
that χj

x = χj′ . Thus χj and χj′ are in the same orbit and so we have j = j′.
Since j = j′, we have that χj

x = χj . So x ∈ Ij and xIjx
−1∩Ij′ = Ij . Hence

we now have that the KIj-modules Wj,ρ and Wj,ρ′ have a composition factor
in common. But these modules are also irreducible as KIj-modules. Thus we
get that Wj,ρ and Wj,ρ′ are isomorphic as KIj-modules. Since Hj ≤ Ij , if
we restrict Wj,ρ and Wj,ρ′ to Hj , then they will still be isomorphic as KHj-
modules. But Wj,ρ restricted to Hj affords the representation ρ and Wj,ρ′

restricted to Hj affords the representation ρ′. Thus ρ ∼= ρ′.
For the last part, let us assume that V is an irreducible KG-module with

representation θ. Now VN is completely reducible and since all irreducible
representations of N over K are of degree 1, the abelian group, Ñ , is the set of
all irreducible representations of N over K. So Ñ = IrrK(N) and we can write

VN = ⊕χ∈ÑVχ,

where Vχ = {v ∈ V | θ(a)v = χ(a)v, ∀a ∈ N}.

For any x ∈ G and χ ∈ Ñ , we have θ(x)(Vχ) = Vχx . Since V 6= 0, there
exists χ, such that Vχ 6= 0. We can assume without loss of generality, there
exists j, such that χ = χj .

Now for any x ∈ Ij , we have θ(x)(Vχj
) = Vχj

x = Vχj
. So Vj := Vχj

is a
KIj-submodule of V and is completely reducible as a KIj-module. Let W be
any irreducible KIj-submodule of Vj . So for any a ∈ N and w ∈ W , we have
θ(a)w = χj(a)w. By restriction we can regard W as a KHj-module. It is easy
to show that any KHj-submodule of WHj

is also a KIj-submodule of W . Thus
WHj

is irreducible.
Let ρ be the irreducible representation afforded by WHj

. Then for any
w ∈ W and h ∈ Hj , we have ρ(h)w = θ(h)w. Further, if Vj is a one-dimensional
representation space for Ij affording the character χj , then, as in the previous
parts, we shall assume that Wj,ρ := Vj ⊗ W is a KIj-module affording the
representation χj ⊗ ρ.

Now let g = ah ∈ Ij where a ∈ N and h ∈ Hj . Then for w ∈ W and v ∈ Vj ,

(χj ⊗ ρ (g))(v ⊗ w) = χj(a)v ⊗ ρ(h)(w)

= χj(a)v ⊗ (θ(h)(w))

= v ⊗ χj(a)(θ(h)(w))

= v ⊗ θ(a)(θ(h)(w))

= v ⊗ θ(ah)(w)

= v ⊗ θ(g)(w) .
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Thus W ∼= Wj,ρ as KIj-modules and we have shown that VIj has a composition
factor isomorphic to Wj,ρ, which affords the representation χj ⊗ ρ. So by

Remark 2.1, we have i(VIj ,Wj,ρ) 6= 0 and by FRT we get that i(V, (Wj,ρ)
G
) 6= 0.

But V is an irreducible KG-module and by part (i), so is (Wj,ρ)
G. Since

HomKG(V, (Wj,ρ)
G
) 6= 0, by Schur’s Lemma we get that V is isomorphic to

(Wj,ρ)
G as KG-modules. Equivalently we have that θ ∼= θj,ρ. �

Our next result is similar to the above result except that we no longer impose
the condition that all irreducible KN -modules have dimension 1.

Theorem 4.2. Let G be a finite group which is a semi-direct product of an

abelian group N by a subgroup H. Let K be a field such that charK does not

divide |G|. Let O1, . . . , Ot be the distinct orbits under the action of G on Ñ

and let χj be a representative of the orbit Oj . Let Ij denote the stabiliser of χj

and let Hj := Ij∩H. For any irreducible representation ρ of Hj, let θj,ρ denote

the representation of G induced from the irreducible representation χj ⊗ ρ of

Ij. Then

(i) θj,ρ is irreducible.

(ii) If θj,ρ and θj′,ρ′ are isomorphic, then j = j′ and ρ is isomorphic to ρ′.

(iii) Let V be an irreducible KG-module affording the representation θ and

let VN have a one-dimensional composition factor. Then θ is isomor-

phic to one of the θj,ρ.

Proof. The proofs of parts (i) and (ii) are identical to the proofs of the same
parts in Theorem 4.1.

For part (iii), let us assume that V is an irreducible KG-module affording
the representation θ and let VN have a one-dimensional composition factor. So
there exists a KN -submodule, Vo of V and χo ∈ Ñ such that θ = χo on Vo.

For any χ ∈ Ñ , let Vχ = {v ∈ V | θ(a)v = χ(a)v, ∀a ∈ N}. For any x ∈ G

and χ ∈ Ñ , we have θ(x)(Vχ) = Vχx .
It is clear that Vo ⊆ Vχo

and so Vχo
6= 0. Further by the above paragraph

we may assume that χo = χj for some j.
Thus we have that the subspace Vχj

of V is non-zero. As in the proof of part
(iii) of Theorem 4.1, we can regard Vχj

as a KIj -module. Proceeding exactly
as we did in the proof from that point, we can show that VIj has a composition
factor affording the representation χj ⊗ ρ for some irreducible representation ρ

of Hj and that θ is isomorphic to θj,ρ. �

We conclude with a note on some examples of groups and fields that satisfy
the hypothesis of Theorem 4.1.

Note 4.1. Let G be a finite group which is a semidirect product of a normal
abelian subgroup N of exponent m by a subgroup H . Let K be a finite field
with q elements such that charK does not divide |G| and such that m divides
q − 1. Then all irreducible KN -modules have dimension 1 and so G satisfies
the hypothesis of Theorem 4.1.
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