• Title/Summary/Keyword: Finite field multiplication

Search Result 118, Processing Time 0.03 seconds

Fast Sequential Optimal Normal Bases Multipliers over Finite Fields (유한체위에서의 고속 최적정규기저 직렬 연산기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1207-1212
    • /
    • 2013
  • Arithmetic operations over finite fields are widely used in coding theory and cryptography. In both of these applications, there is a need to design low complexity finite field arithmetic units. The complexity of such a unit largely depends on how the field elements are represented. Among them, representation of elements using a optimal normal basis is quite attractive. Using an algorithm minimizing the number of 1's of multiplication matrix, in this paper, we propose a multiplier which is time and area efficient over finite fields with optimal normal basis.

Design of Montgomery Algorithm and Hardware Architecture over Finite Fields (유한 체상의 몽고메리 알고리즘 및 하드웨어 구조 설계)

  • Kim, Kee-Won;Jeon, Jun-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.41-46
    • /
    • 2013
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Recently, many semi-systolic architectures have been proposed for multiplications over finite fields. Also, Montgomery multiplication algorithm is well known as an efficient arithmetic algorithm. In this paper, we induce an efficient multiplication algorithm and propose an efficient semi-systolic Montgomery multiplier based on polynomial basis. We select an ideal Montgomery factor which is suitable for parallel computation, so our architecture is divided into two parts which can be computed simultaneously. In analysis, our architecture reduces 30%~50% of time complexity compared to typical architectures.

New Multiplier using Montgomery Algorithm over Finite Fields (유한필드상에서 몽고메리 알고리즘을 이용한 곱셈기 설계)

  • 하경주;이창순
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.190-194
    • /
    • 2002
  • Multiplication in Galois Field GF(2/sup m/) is a primary operation for many applications, particularly for public key cryptography such as Diffie-Hellman key exchange, ElGamal. The current paper presents a new architecture that can process Montgomery multiplication over GF(2/sup m/) in m clock cycles based on cellular automata. It is possible to implement the modular exponentiation, division, inversion /sup 1)/architecture, etc. efficiently based on the Montgomery multiplication proposed in this paper. Since cellular automata architecture is simple, regular, modular and cascadable, it can be utilized efficiently for the implementation of VLSI.

  • PDF

The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP (Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계)

  • 변기영;황종학;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • This study focuses on the hardware implementation of fast and low-complexity multiplier over GF(2$^{m}$ ). Finite field multiplication can be realized in two steps: polynomial multiplication and modular reduction using the irreducible polynomial and we will treat both operation, separately. Polynomial multiplicative operation in this Paper is based on the Permestzi's algorithm, and irreducible polynomial is defined AOP. The realization of the proposed GF(2$^{m}$ ) multipleker-based multiplier scheme is compared to existing multiplier designs in terms of circuit complexity and operation delay time. Proposed multiplier obtained have low circuit complexity and delay time, and the interconnections of the circuit are regular, well-suited for VLSI realization.

Modular Multiplier based on Cellular Automata Over $GF(2^m)$ (셀룰라 오토마타를 이용한 $GF(2^m)$ 상의 곱셈기)

  • 이형목;김현성;전준철;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.112-117
    • /
    • 2004
  • In this paper, we propose a suitable multiplication architecture for cellular automata in a finite field $GF(2^m)$. Proposed least significant bit first multiplier is based on irreducible all one Polynomial, and has a latency of (m+1) and a critical path of $ 1-D_{AND}+1-D{XOR}$.Specially it is efficient for implementing VLSI architecture and has potential for use as a basic architecture for division, exponentiation and inverses since it is a parallel structure with regularity and modularity. Moreover our architecture can be used as a basic architecture for well-known public-key information service in $GF(2^m)$ such as Diffie-Hellman key exchange protocol, Digital Signature Algorithm and ElGamal cryptosystem.

A Construction of Cellular Array Multiplier Over GF($2^m$) (GF($2^m$)상의 셀배열 승산기의 구성)

  • Seong, Hyeon-Kyeong;Kim, Heung-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.81-87
    • /
    • 1989
  • A cellular array multiplier for performing the multiplication of two elements in the finite field GF($2^m$) is presented in this paper. This multiplier is consisted of three operation part ; the multiplicative operation part, the modular operation part, and the primitive irreducible polynomial operation part. The multiplicative operation part and the modular operation part are composed by the basic cellular arrays designed AND gate and XOR gate. The primitive iirreducible operation part is constructed by XOR gates, D flip-flop circuits and a inverter. The multiplier presented here, is simple and regular for the wire routing and possesses the properties of concurrency and modularity. Also, it is expansible for the multiplication of two elements in the finite field increasing the degree m and suitable for VLSI implementation.

  • PDF

AN ALGORITHM FOR MULTIPLICATIONS IN F2m

  • Oh, SeYoung;Yoon, ChungSup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.85-96
    • /
    • 2003
  • An efficient algorithm for the multiplication in a binary finite filed using a normal basis representation of $F_{2^m}$ is discussed and proposed for software implementation of elliptic curve cryptography. The algorithm is developed by using the storage scheme of sparse matrices.

  • PDF

Efficient Computation of Eta Pairing over Binary Field with Vandermonde Matrix

  • Shirase, Masaaki;Takagi, Tsuyoshi;Choi, Doo-Ho;Han, Dong-Guk;Kim, Ho-Won
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.129-139
    • /
    • 2009
  • This paper provides an efficient algorithm for computing the ${\eta}_T$ pairing on supersingular elliptic curves over fields of characteristic two. In the proposed algorithm, we deploy a modified multiplication in $F_{2^{4n}}$ using the Vandermonde matrix. For F, G ${\in}$ $F_{2^{4n}}$ the proposed multiplication method computes ${\beta}{\cdot}F{\cdot}G$ instead of $F{\cdot}G$ with some ${\beta}$ ${\in}$ $F^*_{2n}$ because ${\beta}$ is eliminated by the final exponentiation of the ${\eta}_T$ pairing computation. The proposed multiplication method asymptotically requires only 7 multiplications in $F_{2^n}$ as n ${\rightarrow}$ ${\infty}$, while the cost of the previously fastest Karatsuba method is 9 multiplications in $F_{2^n}$. Consequently, the cost of the ${\eta}_T$ pairing computation is reduced by 14.3%.

  • PDF

Efficient Implementation of Finite Field Operations in NIST PQC Rainbow (NIST PQC Rainbow의 효율적 유한체 연산 구현)

  • Kim, Gwang-Sik;Kim, Young-Sik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.527-532
    • /
    • 2021
  • In this paper, we propose an efficient finite field computation method for Rainbow algorithm, which is the only multivariate quadratic-equation based digital signature among the current US NIST PQC standardization Final List algorithms. Recently, Chou et al. proposed a new efficient implementation method for Rainbow on the Cortex-M4 environment. This paper proposes a new multiplication method over the finite field that can reduce the number of XOR operations by more than 13.7% compared to the Chou et al. method. In addition, a multiplicative inversion over that can be performed by a 4x4 matrix inverse instead of the table lookup method is presented. In addition, the performance is measured by porting the software to which the new method was applied onto RaspberryPI 3B+.

A New Arithmetic Unit Over GF(2$^{m}$ ) for Low-Area Elliptic Curve Cryptographic Processor (저 면적 타원곡선 암호프로세서를 위한 GF(2$^{m}$ )상의 새로운 산술 연산기)

  • 김창훈;권순학;홍춘표
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.547-556
    • /
    • 2003
  • This paper proposes a novel arithmetic unit over GF(2$^{m}$ ) for low-area elliptic curve cryptographic processor. The proposed arithmetic unit, which is linear feed back shift register (LFSR) architecture, is designed by using hardware sharing between the binary GCD algorithm and the most significant bit (MSB)-first multiplication scheme, and it can perform both division and multiplication in GF(2$^{m}$ ). In other word, the proposed architecture produce division results at a rate of one per 2m-1 clock cycles in division mode and multiplication results at a rate of one per m clock cycles in multiplication mode. Analysis shows that the computational delay time of the proposed architecture, for division, is less than previously proposed dividers with reduced transistor counts. In addition, since the proposed arithmetic unit does not restrict the choice of irreducible polynomials and has regularity and modularity, it provides a high flexibility and scalability with respect to the field size m. Therefore, the proposed novel architecture can be used for both division and multiplication circuit of elliptic curve cryptographic processor. Specially, it is well suited to low-area applications such as smart cards and hand held devices.