
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 15, No. 2, December 2002

AN ALGORITHM FOR MULTIPLICATIONS IN F2m

SeYoung Oh* and ChungSup Yoon**

Abstract. An efficient algorithm for the multiplication in a binary

finite filed using a normal basis representation of F2m is discussed and
proposed for software implementation of elliptic curve cryptography.

The algorithm is developed by using the storage scheme of sparse

matrices.

1. Introduction

For implementing elliptic curve public-key cryptographic system

over binary finite fields of characteristic two, the calculation of Q =

nP , for P a base point on the elliptic curve and n an integer, is

the core operation, which mostly involves multiplications in the bi-

nary finite field. Therefore, reducing words operations and memory

required to perform the field multiplication is crucial for efficient soft-

ware implementation of the scalar multiplication nP in elliptic curve

cryptographic systems.

There are many different basis of the binary field F2m over F2. The

multiplication of F2m can be quite different depending on the choice

of the basis of F2m . ANSI X9.62 permits only polynomial basis and

normal basis of the binary field F2m for the secure implementation

of elliptic curve cryptography. The polynomial basis representation ,

however, seems to offer better performance in software implementa-

tion than the normal basis.

Received by the editors on January 16, 2003.
2000 Mathematics Subject Classifications: Primary 94A60.

Key words and phrases: Elliptic Curve Cryptography, Binary finite field, Nor-

mal basis.

85

86 SEYOUNG OH AND CHUNGSUP YOON

In this paper we discuss the multiplication using a normal basis

representation of F2m and propose an efficient algorithm for the mul-

tiplication to implement in software. A software implementation of

field multiplication using a polynomial basis representation has been

proposed in [7], while a normal basis representation was used to im-

plement in software in [11]. The proposed algorithm in this paper is

similar to the algorithm in the latter article. Our algorithm is , how-

ever, to speed up the computation by reducing the memory storage

and using a storage scheme for a sparse matrix.

In section 2, we discuss some mathematical backgrounds for finite

field and its normal basis representation. Multiplication matrix is

introduced to get a mathematical formula of field multiplication, and

a modified one of the algorithm proposed in [11] is described in section

3. The proposed algorithm can be applied to the both of type I and

II optimal normal basis representation.

2. Mathematical Backgrounds

- Binary finite field : F2m

A finite field Fq(or Galois field) of order q(finite) is a set with q

elements in which the algebraic operations of addition, substraction,

multiplication and division by nonzero elements are possible and the

algebraic laws of commutativity and distributivity hold. If q > 1 is

an integer, then a finite field of order q exists if q is a prime power

and not otherwise. When q = 2m for some m, the field F2m is called

a binary finite field. The field F2m can be viewed as a vector space of

dimension m over F2, or the 2m possible bit strings of length m. For

example there exists a basis {α0, α1, · · · , αm−1} in F2m such that each

α ∈ F2m can be written uniquely in the form α =
∑m−1

i=0 aiαi, ai ∈ F2.

Now we can represent α as the 0−1 vector (a0a1 · · · am−1). There are

many common representations for binary finite fields. Some represen-

AN ALGORITHM FOR MULTIPLICATIONS IN F2m 87

tations may lead to more efficient implementations of field arithmetic

in hardware or in software. The normal basis representation for F2m

is focused in this article.

If a subset B = {β, β2, β22
, · · · , β2m−1

} of F2m for β ∈ F2m

is linearly independent over F2 , then the subset is called a nor-

mal basis of F2m over F2. For every positive integer m there ex-

ists a normal basis of F2m (see[1]). For all α ∈ F2m , we can write

α =
∑m−1

i=0 aiβ
2i

, ai ∈ {0, 1} and represent α by interpreting 0 − 1

vector or n-bit string (a0a1a2 · · · am−1). Note that all of the elements

of a normal basis are distinct roots of the same irreducible binary

polynomial f of degree m over F2, which is called normal polynomial.

Such normal polynomials exist for every degree m.

- Producing an irreducible polynomial of degree m over F2

To compute the reduction of polynomials modulo f(x) efficiently,

f(x) has a small number of terms. The irreducible polynomials with

the least number of terms are the trinomials xm + xk + 1. Provided

that one exists, it is the best choice for the field polynomial. If a

trinomial of degree m does not exist, then the next best polynomials

are the pentanomials xm + xa + xb + xc + 1. For every m up to 1000,

there exists either an irreducible trinomial or pentanomial of degree

m. [2] provides a table with an example for each m up to 1000. An

irreducible polynomial of degree m over F2 also can be constructed

by the following algorithm:

Algorithm 2.1 : Irreducible polynomials over F2

0. choose f(x) with an odd number of nonzero terms, at least one

odd-degree term and 1 as constant term.

1. d ← deg(f(x))

2. u(x)← x

88 SEYOUNG OH AND CHUNGSUP YOON

3. for i = 1 to ⌊d
2 ⌋ do

3− 1. u(x)← u(x)2 mod f(x)

3− 2. g(x)← u(x) + x, b(x) ← f(x))

3− 3. while b(x) 6= 0

i) compute g(x) = b(x)q(x) + r(x).

ii) g(x)← b(x), b(x) ← r(x).

3− 4. If g(x) 6= 1 then go to 0.

4. print f(x) .

From the statistical point of view, it is known that the probability

that f(x) is irreducible is about 4/m. Thus one can find an irreducible

polynomial of degree m out of m/4 choices.

- Finding a normal basis for F2m

A normal basis is specified by its field polynomial f(x). After

producing an irreducible polynomial of degree m over F2, we want to

check if it is normal by the following algorithm 2.2 [2].

Algorithm 2.2 Checking the normality of f(x)

input : f(x) : irreducible polynomial of degree m over F2.

output : normal polynomial f(x) over F2

0. Choose an irreducible polynomial of degree m over F2 by

algorithm 2.1 and Algorithm 2.2

1. Compute m×m matrix A such that













x
x2

x22

...
x2m−1













=











A























1
x
x2

...
xm−1













(modf(x))

2. Determine the inverse matrix A−1 of A over F2.

AN ALGORITHM FOR MULTIPLICATIONS IN F2m 89

2.1 If A−1 exists, then f(x) is normal.

2.2 Otherwise, f(x) is not normal, and go to 0.

It is known that the probability of a randomly chosen irreducible

polynomial of degree m over F2 being normal is at least 0.2 if m ≤

2000, and is usually much higher. That is, one of five chosen irre-

ducible polynomial is normal. In algorithm 2.2, the step 1 provides a

normal basis for F2m . If we take some element β ∈ F2m , the polyno-

mial representation is :

β = a00 + a01x + a02x
2 + · · ·+ a0m−1x

m−1 .

By repeating squaring modulo 2, we can compute the elements

of A. If A−1 exists, a normal basis can be formed using the set

{β, β2, β22
, · · · , β22

}.

3. Multiplication over normal basis of F2m

In elliptic curve cryptography over F2m , we need two kinds of op-

erations, addition and doubling of points, on a commutative abelian

group. Those operations involve just a few arithmetic operations ,

squaring , multiplication, and inversion in the binary finite field F2m .

There are many different basis of F2m over F2. Some basis lead to

more efficient software or hardware implementations of the arithmetic

in F2m than other basis. ANSI 9.62 permits two kinds of basis : poly-

nomial basis and normal basis. Fast implementation techniques for

F2m arithmetic have been studied intensively in the past twenty years.

Especially the multiplication technique is the most important since it

is a major part for implementing elliptic curve cryptographic systems.

It is known that normal basis representation performs in hardware [3-

5], while polynomial basis representation is more efficient in software

90 SEYOUNG OH AND CHUNGSUP YOON

[6-8]. In this section we propose an algorithm of multiplication in F2m

using normal basis.

The squaring in a normal basis representation can also be easily

done by a cyclic right shift of the bit string representation, while mul-

tiplication is more complicated depending on the basis chosen. Mul-

tiplication for normal basis can be described as follows([9] and [10]).

Let U0 = (a0a1 · · · am−1) and V0 = (b0b1 · · · bm−1) be two elements in

F2m , and

U0 · V0 = C = (c0c1 · · · cm−1) =
m−1
∑

k=0

ckβ2k

U0 · V0 =

m−1
∑

i=0

m−1
∑

j=0

aibjβ
2i

β2j

.

Once each cross-product term β2i
β2j

=
∑m−1

k=0 λ
(k)
ij β2k

is mapped

to a sum over the basis terms, we get the following equations by

comparing the coefficients of β2k

ck =
m−1
∑

i=0

m−1
∑

j=0

aibjλ
(k)
ij k = 0, 1, · · · ,m− 1 . (1)

Field addition and substraction are implemented as componentwise

exclusive OR(XOR).

Theorem 3.1 ck = UkΛV T
k k = 0, 1, · · · ,m− 1, where Uk =

(akak+1 · · · am−1+k), Vk = (bkbk+1 · · · bm−1+k) with subscripts mod-

ulo m and Λ = (λ
(0)
ij) is m × m sparse 0-1 matrix independent of

k.

Proof : From (β2i
β2j

)2
−l

= β2i−l
β2j−l

∈ F2m for 0 ≤ l ≤ m− 1 ,

it can be represented by the normal basis terms :

β2i−l
β2j−l

=
m−1
∑

k=o

λ
(k)
i−lj−lβ

2k
. (2)

AN ALGORITHM FOR MULTIPLICATIONS IN F2m 91

On the other hand,

(β2i
β2j

)2
−l

=(

m−1
∑

k=0

λ
(k)
ij β2k

)2
−l

=λ
(l)
ij β20

+ λ
(l+1)
ij β21

+ · · ·+ λ
(m−1)
ij β2m−l−1

+ λ
(0)
ij β2m−l

+

λ
(1)
ij β2m−l+1

+ · · ·+ λ
(l−1)
ij β2m−1

=λ
(0)
ij β2m−l

+ λ
(1)
ij β2m−l+1

+ · · ·+ λ
(l−1)
ij β2m−1

+ λ
(l)
ij β20

+

· · ·+ λ
(m−1)
ij β2m−l−1

=λ
(0)
ij β2−l

+ λ
(1)
ij β2−l+1

+ · · ·+ λ
(l−1)
ij β2−1

+ λ
(l)
ij β20

+ · · ·+

λ
(m−1)
ij β2m−l−1

=

m−1
∑

k=0

λ
(k)
ij β2k−1

. (3)

Note that β2m−l
= β2−l

since β2m
= 1. Comparing the coefficients

of β20
yields

λ
(l)
ij = λ

(0)
i−lj−l i, j = 0, 1, · · · ,m− 1, 0 ≤ l ≤ m− 1 .

The equation (1) can be rewritten as

ck =
m−1
∑

i=0

m−1
∑

j=0

aibjλ
(0)
i−kj−k . (4)

Now we change the indices by transformation i− k = i′, j − k = j ′

and (4) leads to

92 SEYOUNG OH AND CHUNGSUP YOON

ck =
m−1−k

∑

i′=−k

m−1−k
∑

j′=−k

ai′+kbj′+kλ
(0)
i′j′

=

m−1
∑

i′=0

m−1
∑

j′=0

ai′+kbj′+kλ
(0)
i′j′

=
m−1
∑

i=0

m−1
∑

j=0

ai+kbj+kλ
(0)
ij

= UkΛV T
k ,

where Λ = (λ
(0)
ij), Uk = (akak+1 · · · ak+m−1), and Vk = (bkbk+1 · · · bk+m−1).

The matrix Λ is called multiplication sparse matrix of f(x) for the

normal basis of F2m and is depending only on λ
(0)
ij . Note that λ

(0)
ij

is the coefficient of β once β2i

β2j

is computed. The computation of

multiplication matrix Λ can be cumbersome in general. A different

way to find Λ is provided in [2] as in the following theorem.

Theorem 3.2 If the normal polynomial f(x) = xm +αm−1x
m−1 +

αm−2x
m−2 + · · ·+ α1x + α0 and

D = AMA−1 ,

where A is a basis matrix from algorithm 2.2 and

M =













0 1 0 0 · · · 0
0 0 1 0 · · · 0

. . .

0 0 0 · · · 0 1
α0 α1 α3 α4 · · · αm−1













,

then Λ = (λ
(0)
ij) = (Dj−i,−i).

AN ALGORITHM FOR MULTIPLICATIONS IN F2m 93

- An algorithm for the field multiplication

In order to implement the normal basis multiplication efficiently,

we store the sparse matrix Λ more compactly using two vectors N1

and N2. For simplicity let Λ = (λ
(0)
ij) = (Λij). Let T be the number

1′s in Λij and N1 be a vector of length T where the entries are indices

of the column, that is j ′s, with 1′s in each row of Λ, and let N2(k) be

an index of N1, which indicates the first column with 1 in kth row of

Λ. For example, if

∧ = (λij
(0)) =







0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1






,

then the number 1′s in Λ is 7, that is, T = 7, and

N1 = (2, 2, 3, 0, 1, 1, 3)

N2 = (0, 1, 3, 5, 7) .

With these two vectors, we can figure out all of 1′s in Λ. That is,

Λ0N1(N2(0)) = Λ02 = 1

Λ1N1(N2(1)) = Λ12 = 1

Λ1N1(N2(1)+1) = Λ13 = 1

Λ2N1(N2(2)) = Λ20 = 1

Λ2N1(N2(2)+1) = Λ21 = 1,

and so on. Let A(and B) be U0(and V0) in the previous section 3.1

respectively. To reduce the time and memory complexity, a new way

of doing the pre-computation for A and B is provided in [11]. We use

the scheme of pre-computation for an algorithm but only necessary

pre-computations. Let w=32 bits and t = ⌊m
32⌋ words with assumption

94 SEYOUNG OH AND CHUNGSUP YOON

of a 32-bit architecture platform for the implementation. The bits of a

word are numbered from 0 to 31. The pre-computations are performed

by storing m words for A,B, and C

A[i] = (ai, ai+1, · · · , ai+w−1)

B[i] = (bi, bi+1, · · · , bi+w−1) (6)

C [i] = (ci, ci+1, · · · , ci+w−1)

for i = 0, 1, · · · ,m− 1 in a wrap-around fashion. Then C = A ·B can

be represented as

C = (c[0], c[w], c[2w], · · · , c[(t− 1)w]), c[iw] ∈ F 32
2 , i = 0, 1, · · · , t − 1,

c[wk] =
m−1
∑

j=0

m−1
∑

i=0

A[(wk + i)mod m]ΛijB[(wk + j)modm]

=
m−1
∑

i=0

A[(wk + i)mod m]
m−1
∑

j=0

ΛijB[(wk + j)mod m],

where k = 0, 1, · · · , t − 1. Now a new method for normal basis mul-

tiplication can be described. The proposed method is similar to the

method provided in [11]. The method proposed in this article, how-

ever, uses the storage scheme for sparse matrix Λ whose memory

required to be compatible for Λ in [11] is much less.

Algorithm 3.1 Multiplication of two elements in F2m

input : A = (a0a1 · · · am−1), B = (b0b1 · · · bm−1) ∈ F2m

output : C = (c0c1 · · · cm−1) = (c[0], c[w], c[2w], · · · , c[(t− 1)w])

1. Compute m vectors A[i] and B[i] for i = 0, 1, · · · ,m − 1 as

(6)

2. for k = 0 to ⌊m
w
⌋ − 1 do

2.1. c[kw] = 0 ∈ F232

AN ALGORITHM FOR MULTIPLICATIONS IN F2m 95

2.2. for i = 0 to m− 1 do

2.2.1. temp ← 0, temp ∈ F232

2.2.2. for j = N2(i) to N2(i + 1)− 1

temp ← temp +B[(N1(j) + kw) mod m]

2.2.3. c[kw]← c[kw] + (temp ·A[(i + kw) mod m])

2.3. print c[kw]

The number of word operations for step 2.2 is equal to T, which is

the number of 1′s in Λ, and ⌊m
w
⌋ word operations for step 2. Thus the

total number of word operations for the multiplication is O(T · m
w

),

which is the same as that in [11]. But the step 2.2 in our algorithm

requires only T loops and T words storage, while the algorithm in

[11] needs m2 loop including ”if” statements and the storage for the

matrix Λ requires m2 words. Thus the memory complexity is reduced

to approximately 2T
m2 which is less than 4% when T = 2m − 1 and

m = 100.

It has been proved in [10] that 2m− 1 ≤ T ≤ m2. When the lower

bound T = 2m − 1 is attained, the normal basis is called optimal

normal basis, for which multiplication is both simpler and more effi-

cient. The existence of optimal normal basis (Type I and Type II)

has been completely characterized in [10] and [12]. Since we use the

sparse storing scheme for matrix Λ, the proposed algorithm here can

handle efficiently the field multiplication on optimal normal basis rep-

resentations of both Types I and II without modifying the algorithm.

References

1. R. Lidl and H. Niederreiter, Finite Fields, Cambridge university press, 1987.

2. IEEE P 1363 - 2000, Standard Specifications for Public Key Cryptography,

August, 1998.

3. J. L.Massey and J. K. Omura, Computational method and apparatus for finite

field arithmetic, U. S. Patent 4, 587, 627, May 1986.

4. R. C. Mullin, Multiple Bit Multiplier, U. S. Patent 5, 787, 028, July 1998.

96 SEYOUNG OH AND CHUNGSUP YOON

5. R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone, Computational Method

and Apparatus for Finite Field Multiplication, U. S. Patent 4, 745, 568, May

1988.
6. E. DeWin, A. Bosselaers, S. Vandenberghe, P. De Gersim and J. Vandewalle,

A Fast Software Implementation for Arithmetic Operations in F2m , In proc.

Asiacrypt ’96 , 1996.

7. D. Hankerson, J. L. Hernandez, and A. Menezes, Software Implementation of

Elliptic Curve Cryptography over Binary Fields, In Proc. CHES’ 2000, August
2000.

8. J. Lopez and R. Dahab, High-speed Software Multiplication in F2m , Technical

report, IC-00-09, May 2000.

9. A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic

Publishers, Boston, 1993.
10. R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone and R. M. Wilson, Optimal

Normal Basis in GF (pn), in Discrete App. Math. Vol.22, pp149-161, 1988.

11. P.Ning and Y. L. Yin, Efficient Software Implementation for Finite Field

Multiplication in Normal Basis, preprint.

12. S. Gao and H. W. Lenstra, Optimal Normal Basis, Designs, Codes and Cryp-

tography, vol.2, pp315-323, 1992.

*

SeYoung Oh

Department of Mathematics

Chungnam National University

Taejon 305-764, Korea

E-mail : soh@math.cnu.ac.kr

**

ChungSup Yoon

Department of Mathematics

Chungnam National University

Taejon 305-764, Korea

E-mail : csyoon@math.cnu.ac.kr

