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This paper provides an efficient algorithm for 
computing the Tη pairing on supersingular elliptic curves 
over fields of characteristic two. In the proposed algorithm, 
we deploy a modified multiplication in 42 nF  using the 
Vandermonde matrix. For 42

, ,nF G F∈  the proposed 
multiplication method computes F Gβ ⋅ ⋅  instead of 
F G⋅ with some *

2nFβ ∈  because β is eliminated by the 
final exponentiation of the Tη  pairing computation. The 
proposed multiplication method asymptotically requires 
only 7 multiplications in 

2nF  as n → ∞ , while the cost of 
the previously fastest Karatsuba method is 9 
multiplications in

2nF . Consequently, the cost of the Tη  
pairing computation is reduced by 14.3%. 
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I. Introduction 

Pairings have been attractive for cryptography, and the Tη  
pairing proposed by Barreto and others [1] is one of the fastest 
pairings. The Tη  pairing is defined on supersingular elliptic 
curves over finite fields of characteristic two or three. In this 
paper, we particularly focus on the Tη  pairing on 
supersingular elliptic curves in characteristic two because it is 
more suitable for implementation on computers. The speed for 
the Tη  pairing in characteristic two bottlenecks at the 
multiplications in the 4th extension field 42 nF . For Tη  
pairing in characteristic three, there are two methods to 
improve the speed of the extension field: the loop unrolling 
technique [2] and an efficient multiplication by discrete Fourier 
transformation (DFT) [3]. This paper extends these methods 
for extension field 42 nF .  

A loop unrolling technique tries to reduce the number of 
multiplications in a finite field by merging two or more 
iterations of a loop into one. In the case of characteristic three, 
the loop unrolling technique makes the Tη pairing fast [2]. On 
the other hand, if we directly apply it to the case of 
characteristic two, it becomes no more efficient than it would 
be without loop unrolling. However, the loop unrolling 
technique provides us with an efficient pairing algorithm if we 
modify an efficient multiplication method in 42 nF .  

The Karatsuba method [4] has been used to efficiently 
compute multiplications in extension fields. Gorla and others 
proposed an efficient multiplication method in 63 nF  using the 
DFT matrix [3]. We call it the GPS multiplication in this paper, 
in accordance with the authors’ names. However, if we apply 
this multiplication directly to a case of characteristic two, the 
cost of multiplication in 42 nF with this method is the same as 

Efficient Computation of Eta Pairing over  
Binary  Field with Vandermonde Matrix 

 Masaaki Shirase, Tsuyoshi Takagi, Dooho Choi, DongGuk Han, and Howon Kim  



130   Masaaki Shirase et al. ETRI Journal, Volume 31, Number 2, April 2009 

that with the conventional Karatsuba method.  
This paper proposes a faster algorithm for computing the 

Tη  pairing over 
2nF using loop unrolling and the improved 

extension field multiplication in 42 nF  with the Vandermonde 
matrix. We may compute F Gβ ⋅ ⋅  instead of F G⋅ for any 

42
, nF G F∈ and *

2nFβ ∈  in an algorithm for computing the 

Tη  pairing because β powers to 1 in the final exponentiation, 
and has no effect on the pairing value. Therefore, the improved 
multiplication method computes the multiplication F Gβ ⋅ ⋅ . 
The cost of the improved multiplication method is 
asymptotically 7 multiplications in 

2nF  as n → ∞ . Note that 
a multiplication F G⋅  requires 9 multiplications in 

2nF with 
the Karatsuba method. Combining the loop unrolling technique 
and the proposed multiplication method, we can achieve an 
efficient algorithm for computing the Tη  pairing.  

The remainder of this paper is organized as follows. In 
section II, we provide a loop unrolling algorithm for computing 
the Tη  pairing over 

2
.nF  In section III, we describe 

polynomial multiplication. In section IV, we propose a 
multiplication method in 42 nF  for the Tη  pairing and 
estimate the cost. In section V, we apply the proposed method 
to an algorithm for computing the Tη  pairing. Last, in section 
VI, we conclude this paper. 

II. Tη Pairing in Characteristic Two 

A pairing e used in cryptography such as the Tη  pairing, 
the Tate pairing, and the Ate pairing [5] are forms of bilinear 
mapping,  

1 2: ,knp
e G G F× →  

where G1 is a group based on 2( ),np
E F G is a group based on 

( )np
E F or ( ),knp

E F E  is an elliptic curve defined over np
F , 

and k denotes the embedding degree. Table 1 shows the 
relationships among pairings, finite fields, and embedding 
degrees.  

In this paper, we deal with the Tη  pairing defined on 
supersingular elliptic curve  

2 3: , {0,1},bE Y Y X X b b+ = + + ∈  

Table 1. Embedding degree k for pairings. 

Pairing Tη or Tate Tate or Ate 

Field 3nF
 3nF

 np
F

 
k 4 6 2, 6, 12, or more 

  

over 
2nF , where n is a large enough prime for security of the 

Tη pairing. Then, n is an odd integer. The Tη  pairing is a 
bilinear mapping  

4
*

2 2 2
: ( ) ( ) ,n n n

b b
T E F E F Fη × →  

and is defined as 
2 ,

( , ) ( ( ))n
W

T P
P Q f Qη ψ= for

2
, ( ),n

bP Q E F∈  
where 

2 ,n P
f  is a function such that its divisor satisfies  

2 ,
div ( ) 2 ( ) ([2 ] ) (2 1)div( ).n

n n n
p

f p p= − − − ∞  

Here, ψ  is the distortion map defined as 
2: ( , ) ( , ),x y x s y sx tψ → + + + where s2=s+1 and t2=t+s, and 

W is an integer defined as 2 ( 1) / 2(2 1)(2 1 2 ),n n nW ε += − + −  
where  

1, if 1,7 (mod 8) and 1
or 3,5(mod 8) and 0,

1, otherwise.

n b
n bε

− ≡ =⎧
⎪= ≡ =⎨
⎪
⎩

 

Algorithm 1. Original algorithm for Tη  pairing [6]. 

Input:
2

( , ), ( , ) ( )n
bP Q E Fα β γ β= = ∈   

Output: 4
*

2
( , ) nT P Q Fη ∈  

1: 1
2

nw α −⎡ ⎤← + ⎢ ⎥⎣ ⎦
 

2:
 ( 1) / 2( 1) ( ) ( )

(cost: )
nF w b w s t

M

γ α δ β ε γ+← ⋅ + + + + + + + + +
 

3: for i=0 to (n-1)/2 do 

4: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦
   

5: ( 1) / 2
1 ( ) ( )

2 n
nF w b w s tγ δ β ε γ−

⎛ ⎞+⎡ ⎤← ⋅ + + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
(G is st-sparse, cost: M) 

6: G ← F⋊G (cost: 6M) 
7: if i<(n-1)/2 then  
8:  2 2, , , (cost: 2 2 )R Sα α β β γ γ δ δ← ← ← ← +  
9: end if 

10: end for 
11: return FW (cost: FE) 

Algorithm 1 is efficient for computing the Tη  pairing [6]. 
In this algorithm, elements in 42 nF  are represented with a 
basis {1, s, t, st}. This basis is called the st-basis, and we denote 
by (a0, a1, a2, a3)st the element a0+a1s+a2t+a3st in 42 nF for 

0 1 2 3 2
, , , .na a a a F∈ We also use another basis of 42 nF , namely, 

the z-basis {1, z, z2, z3} defined by the irreducible polynomial 
h(z)=z4+z+1 over 

2nF . We denote by (b0, b1, b2, b3)z the 
element 4

2
0 1 2 3 2

.nb b z b z b F+ + + ∈ We can transform between 
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the st-basis and the z-basis virtually for free. Indeed, we have 
the following conversion algorithm for (a0, a1, a2, a3)st=(b0, b1, 
b2, b3)z: 

0 0

1 1

2 2

3 3

0 0

1 1

2 2

3 3

1 0 0 0
0 1 1 0

,
0 1 0 1
0 0 0 1

1 0 0 0
0 0 1 1

.
0 1 1 1
0 0 0 1

b a
b a
b a
b a

a b
a b
a b
a b

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

           (1) 

The notations used in algorithm 1 are defined as follows:  

0, if 0,1 (mod 4)
1, otherwise,

[ ] mod 2,

m

m

m m

ε
≡⎧

= ⎨
⎩

=

 

where n is the extension degree of 
2nF  over F2, and m is an 

integer. Powering by W at step 11 in algorithm 1 is called the 
final exponentiation, which can be efficiently computed [7]. 

We define symbols M, S, R, and F as follows:  

M= the cost of a multiplication in 
2

,nF  
S= the cost of a squaring in

2
,nF  

R= the cost of a square root in
2

,nF  
FE= the cost of the final exponentiation. 

Note that G at step 5 is the form of (g0, g1, 1, 0)st for  

0 1 2
, ,ng g F∈ where ( )0 ( 1) / 2[( 1) / 2] ( )ng w n bγ δ β ε −= ⋅ + + + + + +  

and g1=w+γ. Such an element is called st-sparse in this paper. 
Note that the st-sparse element (g0, g1, 1, 0)st is converted to  
(g0, g1+1, g1, 0)z. We then call this element z-sparse. Note that 
there is no difference between the cost of multiplications using 
the st-basis and the cost of multiplications using the z-basis due 
to (1). Now we distinguish among three multiplications in 

42 nF : 

(a) random element by random element: × 
(b) random element by (st, z)-sparse element: ⋊ 
(c) (st, z)-sparse element by (st, z)-sparse element: ⋈ 

where the random element is the form of (g0, g1, g2, g3)st (or (g0, 
g1, g2, g3)st) for 0 1 2 3 2

g , g , g , g .nF∈ We use “·” for 
multiplication of elements in 

2nF and polynomials with 
coefficients in 

2nF .  
The cost of each multiplication is shown in Table 2. 

Multiplication (a) is computed by the Karatsuba method, and 
the computation of (b) is proposed in [1]. We show that (c) can  

Table 2. Multiplication symbols in 42 nF and cost. 

 a b cost 

(a) a×b Random Random 9M 
(b) a  b Random (st, z)-sparse 6M ([1]) 
(c) a  b (st, z)-sparse (st, z)-sparse 3M 

 

 
be computed with the cost of 3M in the appendix. 

Now, we estimate the cost (the number of multiplications) of 
algorithm 1. The cost of each step is written at the end of each 
step. For example, step 2 takes M of “ ( 1).w aγ⋅ + + ” Steps 1 
and 2 are the initialization, with a cost of M. Steps 3 to 8 are the 
main loop. Note that the number of iterations of the main loop, 
except from steps 3 to 6, is ( 1) / 2n + , and the number of 
iterations of steps 3 to 6 is ( 1) / 2n − , where n is an odd 
integer. Then, the cost of the main loop is 
( 1) / 2 7 ( 1) / 2 (2 2 ).n M n R S+ ⋅ + − ⋅ + Step 11 is the final 
exponentiation, with a cost of FE. Therefore, the total cost of 
algorithm 1 is (3.5 4.5) ( 1) ( 1) .En M n S n R F+ + − + − +  

1. Loop Unrolling Technique 

We might be able to enhance the speed of the Tη  pairing 
by unrolling the loop. Indeed, the unrolling technique is 
effective in the case of characteristic three [2], [8].  

Algorithm 2 is the loop unrolling algorithm for computing 
the Tη  pairing over 

2nF based on algorithm 1. Algorithm 2 
merges with algorithm 1 such that “F←F⋊G” at step 6 in the 
2i-th and (2i+1)th iterations of algorithm 1 corresponds to 
“G←G0⋈G1” at step 9 and “F←F×G” at step 10 in the i-th 
iteration of algorithm 2.  

Note that “F←F⋊G” of algorithm 1 takes 6M because F is 
random and G is sparse. On the other hand, “G←G0⋈G1” and 
“F←F×G” of algorithm 2 take 3M and 9M, respectively, 
because G0 and G1 are sparse and F is random. The number of 
iterations of algorithm 1 is twice that of algorithm 2. The cost 
of algorithm 2 is the same as that of algorithm 1, that 
is, (3.5 4.5) ( 1) ( 1) ,En M n M n S F+ + − + − + because 6M+6M= 
3M+9M. 

Also note that if there was a multiplication method for F×G, 
namely, random element by random element, with a cost less 
than 9M, algorithm 2 would be more efficient than algorithm 1. 
Our goal is to find such a method. 

III. Polynomial Multiplication 

Multiplication in a finite field consists of polynomial 
multiplication and reduction modulo an irreducible polynomial.  
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Algorithm 2. Loop unrolling algorithm for Tη pairing 

Input: 
2

( , ), ( , ) ( )n
bP Q E Fα β γ δ= = ∈  

Output: 4
*

2
( , ) nT P Q Fη ∈   

1: 1
2

nw α −⎡ ⎤← + ⎢ ⎥⎣ ⎦
 

2:
 ( 1) / 2( 1) ( ) ( )

(cost: )
nF w b w s t

M

γ α δ β ε γ+← ⋅ + + + + + + + + +
 

3: for i=0 to ( 3) / 4n −⎢ ⎥⎣ ⎦ do 

4: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦
  

5: 0 ( 1) / 2
1 ( ) ( )

2 n
nG w b w s tγ β ε γ−

⎛ ⎞+⎡ ⎤← ⋅ + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 

(G0 is st-sparse, cost: M) 
6: 2 2, , , (cost : 2 2 )R Sα α β β γ γ δ δ← ← ← ← +  

7: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦
 

8: 1 ( 1) / 2
1 ( ) ( ) ,

2 n
nG w b w s tγ δ β ε γ−

⎛ ⎞+⎡ ⎤← ⋅ + + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
(G1 is st-sparse, cost: M) 

9: G←G0⋈G1  (cost: 3M) 
10: F←F×G (cost: 9M) 
11: 2 2, , , (cost: 2 2 )R Sα α β β γ γ δ δ← ← ← ← +  

(11 is unnecessary if 3n ≡ (mod 4) for ( 3) / 4i n= −⎢ ⎥⎣ ⎦ )
12: end for  
13: if 1 (mod 4)i ≡  then 

14: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦
 

15: 0 ( 1) / 2
1 ( ) ( ) ,

2 n
nG w b w s tγ δ β ε γ−

⎛ ⎞+⎡ ⎤← ⋅ + + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
(G0 is st-sparse, cost: M) 

16: F←F⋊G (cost: 6M) 
17: end if 
18: return FW (cost: FE) 
 
In this section, we focus on polynomial multiplication.  

Let F be a finite field. We deal with three methods for 
multiplying polynomials a(z)·b(z) with coefficients in F. The 
first method is based on the Vandermonde matrix (VM) 
method [9]. The second one is based on the discrete Fourier 
transform (DFT) method [9]. The third one was proposed by 
Gorla, Puttmann, and Shokrollahi [3], and we call it the GPS 
multiplication in accordance with the authors’ names. The DFT 
method is an improvement of the VM method, and the GPS 
multiplication is an improvement of the DFT method.  

Let a(z), b(z) be polynomials of degree k–1with coefficients 
with F. We consider polynomial multiplications of 
c(z)=a(z)·b(z) and denote them by  

2 1
0 1 2 1

2 1
0 1 2 1

2 2 2
0 1 2 2 2

( ) ,

( ) ,

( ) .

k
k

k
k

k
k

a z a a z a z a z

b z b b z b z b z

c z c c z c z c z

−
−

−
−

−
−

= + + + +

= + + + +

= + + + +

       (2) 

Note that c0=a0·b0 and c2k-2= ak-1· bk-1.  

1. VM Method 

Substituting z α=  in (2), we obtain  
2 2 2

0 1 2 2 2( ) ( ) ( ) k
ka b c c c c cα α α α α α −

−⋅ = = + + + +  

for any Fα ∈ ; thus,  
2 2 2

0 0 0 0 0 0
2 2 2

1 1 11 1 1

2 2 2
2 2 2 2 2 22 2 2 2 2 2

1 ( ) ( )
( ) ( )1

( ) ( )1

k

k

k
k k kk k k

V VV

c a b
c a b

c a b
B CA

α α α α α
α αα α α

α αα α α

−

−

−
− − −− − −

⎛ ⎞ ⋅⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

(3) 
holds for 2k–1 elements 0 1 2 2, , , .k Fα α α − ∈  The matrix AV 
in (3) is called the VM. If this matrix is regular, then we can 
compute the vector CV, namely, c(z), by  

 1 .V V VB A C−= ⋅                   (4) 

2. DFT Method 

We assume that F contains the primitive (2k–1)th root of 
unity. Let ξ  be this root of unity in F. By setting i

iα ξ=  in 
(4), we obtain  

0
2 3

1

2 2 2 22 2 2
2 2

1 1 1 (1) (1)
( ) ( )11 .

2 1
( ) ( )1

k

k kk
k

a bc
a bc

k
c a b

ξ ξξ ξ

ξ ξξ ξ

−

− −−
−

⎛ ⎞ ⋅⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⋅⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ −
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

 

The computation of c(z)=a(z)·b(z) by the above matrix is 
called the DFT method.  

Here, c(z) is computed with (2k–1) multiplications 
2 2 2 2( (1) (1), ( ) ( ), , ( ) ( ))k ka b a b a bξ ξ ξ ξ− −⋅ ⋅ ⋅ and one 

division by 2k–1 in F under the following assumptions:  

(i) The cost of multiplication of iξ  by each element in F is 
virtually zero, 

(ii) The cost of computations of ( )ia ξ  and ( )jb ξ with  
0 , 2 2i j k≤ ≤ − is virtually zero, and 

(iii) (2k–1) is not equal to the characteristic of F. 
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However, it seems hard to satisfy all three conditions for many 
finite fields, especially the finite fields for the Tη  pairing (see 
the next sections). 

3. GPS Multiplication for 63 nF [3] 

In the case of characteristic three, the algorithm for 
computing the Tη pairing includes computations of 
multiplications in 63 nF , where n is a prime. Unfortunately, the 
DFT method cannot be used for multiplications in field 63 nF  
because the 11th (11=2×6-1) primitive root of unity is not 
contained in 

3nF .  
The GPS multiplication tries to efficiently compute a 

multiplication in 63 nF  by modifying the DFT method in the 
third extension field 63 nF  over 23 nF . Now we consider a 
polynomial multiplication with coefficients in 23 nF  of degree 
2, that is,  

2 2
0 1 2 0 1 2

2 3 4
0 1 2 3 4

( ) ( )

.

a a z a z b b z b z

c c z c z c z c z

+ + ⋅ + +

= + + + +
         (5) 

Elements in 23 nF are represented as 0 1 0 1 3
{ : , },nu u u u Fσ+ ∈  

where 2 1,σ = −  and σ  is the fourth primitive root of unity 
in 23 nF . Then we obtain  

2 2 4
0 1 2 0 1 2 4

2 3 3
0 1 2 3

( ( ) ) ( ( ) ) ( )

( ) ( )

i i i i i

i i i

a a a b b b c

c c c c

σ σ σ σ σ

σ σ σ

+ + ⋅ + + −

= + + +
 

by setting iz σ= in (5) for i=0, 1, 2, 3. They yield the 
following matrix equation:  

40
42 3

41
2 4 6 2 2 8

2 4
3 6 9 3 3 12

3 4

(1) (1)1 1 1 1
( ) ( )1

.
1 ( ) ( )
1 ( ) ( )

a b cc
a b cc

c a b c
c a b c

σ σ σσ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

⋅ −⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ −⎝ ⎠⎝ ⎠ ⎝ ⎠

  (6) 

Because 2 1σ = −  and c4=a2·b2, (6) can be eventually 
converted as follows:  

2 20

2 21
2 2

2 2 2
3 3

3 2 2

(1) (1)1 1 1 1
( ) ( )1 1

.
1 1 1 1 ( ) ( )
1 1 ( ) ( )

a b a bc
a b a bc

c a b a b
c a b a b

σ σσ σ
σ σ

σ σ σ σ

⋅ − ⋅⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⋅ − ⋅− − ⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⋅ − ⋅
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⋅ − ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠

 (7) 

Note that the cost of multiplication of σ  by any element in 
23 nF is virtually zero because 0 1 1 0( )u u u uσ σ σ+ ⋅ = − + , 

where 20 1 0 13 3
( , ).n nu u F u u Fσ+ ∈ ∈  Therefore, the cost of 

computing (7) is 5 multiplications in 23 nF . A multiplication in 
63 nF can be computed with 15 multiplications in

3nF by using 
the Karatsuba method for the multiplication in 23 nF .  

4. Application of DFT Method and GPS Multiplication
  to 42 nF  

In the algorithm for computing the Tη  pairing over
2nF , we 

need multiplications in 42 nF . Here, we consider whether we 
can apply the DFT method and the GPS multiplication to finite 
field 42 nF . 

There is no 7th (7=2×4-1) primitive root of unity in 
2nF , so 

we cannot apply the DFT method to 42 nF .  
We can apply the GPS multiplication to 42 nF  because there 

is a 2nd (2=2×2-2) primitive root of unity in 22 nF . Then, the 
cost of a multiplication in 42 nF  by the GPS multiplication is 
equal to 3 (=2×2-1) multiplications in 22 nF , that is, 9M, where 
M means the cost of a multiplication in 

2nF  as defined in 
section II. However, the Karatsuba method also provides a 
multiplication method with a cost of 9M. Therefore, the GPS 
multiplication cannot reduce the cost in the case of 
characteristic two as it can in the case of characteristic three. 

IV. Proposed Multiplication for Tη  Pairing 

In this section, we present the proposed multiplication 
method, which is an improvement of the VM method over 

42
.nF  The main idea is to deploy the computations of 

*
2

( )nF G Fβ β⋅ × ∈ instead of F×G in algorithm 2, where 
42

, .nF G F∈  Note that 1Wβ =  holds, where powering by W 
is the final exponentiation of the Tη  pairing; thus, we can 
deal with the relaxed multiplication F Gβ ⋅ ×  in the 
following subsection.  

1. Main Idea 

Here we discuss how to modify the multiplication F×G at step 
10 in algorithm 2, where 42

, .nF G F∈ Let us use the z-basis of 
42 nF over

2
,nF which has a definition polynomial of h(z)=z4+z+1. 

Let F=f(z) and G=g(z), where 2 3
0 1 2 3( )f z f f z f z f z= + + +  

and 2 3
0 1 2 3( ) ,g z g g z g z g z= + + + for

2
, .ni jf g F∈ To 

evaluate F×G, we try to compute polynomial  

2 3 4 5 6
0 1 2 3 4 5 6( ) ,e z e e z e z e z e z e z e z= + + + + + +     (8) 

where e(z)=f(z)·g(z). Then F×G can be obtained by  
F×G=e(z) mod h(z).  

First, we note that e0 and e6 can be easily computed, that is,  
e0=f0·g0 and e6=f3·g3. Next, we explain how to find the other 
coefficients e1, e2, e3, e4, and e5 using the VM method.  

Let {1, x,···, xn-1} be a polynomial basis of 
2nF

 
over F2. 

Substituting z=1, x, x+1, x2, (x+1)2 for e(z)=f(z)·g(z), we have 
the following relationship:  
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1
2 3 4 5

2
2 3 4 5

3
2 4 6 8 10

4

2 4 6 8 10
5

0 0 3 3
6

0 0 3 3

1 1 1 1 1

1 ( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

(1) (1)

( ) ( )

(

PP

e
x x x x x e

x x x x x e
ex x x x x
ex x x x x
BA

f g f g f g

f x g x f g f g x

f

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ + + + +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟+ + + + + ⎝ ⎠⎝ ⎠

⋅ + ⋅ + ⋅

⋅ + ⋅ + ⋅ ⋅

= 6
0 0 3 3

2 2 12
0 0 3 3

2 2 12
0 0 3 3

1) ( 1) ( 1) .

( ) ( )

(( 1) ) (( 1) ) ( 1)

P

x g x f g f g x

f x g x f g f g x

f x g x f g f g x

C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+ ⋅ + + ⋅ + ⋅ ⋅ +⎜ ⎟
⎜ ⎟⋅ + ⋅ + ⋅ ⋅
⎜ ⎟⎜ ⎟+ ⋅ + + ⋅ + ⋅ ⋅ +⎝ ⎠

 

Here, the VM Ap is regular; thus, we can compute e1, e2, e3, e4, 
and e5 by 1

p p pB A C−= ⋅ . Next, we present an explicit 
representation of 1 1/ ( )p ijA β α− = ⋅ for i, j=0,1,2,3,4 where αij 
and β are obtained by the following equations1):  
 
α00 = x8+x6+x5+x3, 
α20 = x6+x5+x4+x3+ 1, 
α40 = x2+x+1, 
α11 = x7+x6+x5+x4+x3+ x, 
α31 = x3+x, 
α02 = x7+x6+x5+x4, 
α22 = x6+x5+x4+x3+ x2+ x, 
α42 = x2+x, 
α13 = x4+x3+x2+ 1, 
α33 = x2+ 1, 
α04 = x4+ x3, 
α24 = x2+ x+1, 
α44 = 1, 

α10 = x6+x5+x4+x3+ x2+ x, 
α30 = 0, 
α01 = x7+x3, 
α21 = x6+x5+x4+x3+ x2+ x, 
α41 = x2+x, 
α12 = x7+x2, 
α32 = x3+x2, 
α03 = x4+x3+x2+ x, 
α23 = x2+x+ 1, 
α43 = 1, 
α14 = x4+ x3+x, 
α34 = x2, 
β = x8+x6+x5+ x3. 

 
Note that these equations are calculated with coefficients in F2. 
For example, the (0, 0)-component of Ap·(αij) is computed as  

00 10 20 30 40
8 6 5 4 3 2

8 6 5 3

3 3 2 3 2 2 2

.

x x x x x x x
x x x x

α α α α α

β

+ + + +

= + + + + + + +

= + + +
=

 

Here, 1/ ( )p ij pB Cβ α= ⋅ ⋅ is a formula computing 
e(z)=f(z)·g(z) of (8). However, it still has an inversion of 1/ ,β  
which is relatively slow. Recall that multiplying intermediate 
values in algorithm 2 by any element *

2nr F∈  has no effect on 
the pairing value due to the final exponentiation because rw=1. 
Therefore, dividing by β is not necessary because 
                                                               

1) We found them using PARI/GP [10]. 

*
2

1/ .nFβ ∈ Thus, we eventually obtain a new formula 
computing e(z)=β·f(z)·g(z) as follows: 

T
1 2 3 4 5

0 0 0

6 3 3

( ) ( ) ,

( ),
( ).

ij pe e e e e C

e f g
e f g

α

β
β

⎧ = ⋅
⎪

= ⋅ ⋅⎨
⎪ = ⋅ ⋅⎩

           (9) 

Note that after computation of (9), we need a computation  
2 3 4 5 6

0 1 2 3 4 5 6( )e e z e z e z e z e z e z+ + + + + + mod h(z), where 
h(z)=z4+z+1.  

2. Cost of Proposed Multiplication Method 

The proposed multiplication method consists of computing 
e(z)=β·f(z)·g(z) using (9) and the reduction e(z) mod h(z).  

First we deal with the cost of the reduction modulo  
h(z)=z4+z+1. This modulo is the following linear transform:  

2 3 4 5 6
0 1 2 3 4 5 6

2 3
0 4 1 4 5 2 5 6 3 6

( ) mod ( )

( ) ( ) ( ) ( ) .

e e z e z e z e z e z e z h z

e e e e e z e e e z e e z

+ + + + + +

= + + + + + + + + +
 

Hence, the cost of the reduction e(z) mod f(z) is virtually zero. 
It is then enough to consider the cost of computing (9), that is, 
e(z)=β·f(z)·g(z). 

Next, we discuss the cost of computing e(z)=β·f(z)·g(z). To 
estimate the cost of the proposed multiplication method, we 
have to consider the multiplication with polynomials of very 
small degrees. Define M as  

1 ,
1

M M
n

=
−

 

where M is the cost of a multiplication in 
2nF  as defined in 

section II. We assume the following cost for the multiplication 
with polynomials of very small degrees.  

Assumption 1. Let a be a random element in 
2nF , and let b 

be an element of degree db in 
2nF . Then, the cost of a 

multiplication a·b in 
2nF  becomes .bd M  

Although the cost of multiplication depends on the 
implementation of a multiplication, assumption 1 is correct 
when the multiplication is implemented by the shift-addition 
method [11] or its variations using window methods [4], [11], 
[12], which are basic multiplication methods. We can explain 
how assumption 1 holds.  

First, we consider a multiplication of polynomials a(x)·b(x) 
in F2[x] by the shift-addition method or its variations using 
window methods. The basic step of their algorithms is to shift 
a(x) from right to left (or left to right) and perform addition 
a(x)+b(x) based on each coefficient of b(x). The shift-addition 
method requires dadb shifts and 0.5 a bd d additions in F2, where 
da and db are the degree of a(x), and the degree of b(x), 
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respectively. The number of shifts and additions in the  
variations of the shift-addition method using the window 
methods of width w requires O(db2w) in a precomputation stage  
and O( / )a bd d w in the main loop. The constant term of O  
notation depends on the underlying window method. Therefore, 
the ratio of a(x)·b(x) in F2[x] of db=da over b ad d≤  is equal  
to /b ad d . Then, we have  

the cost of ( ) ( ) , when ,b
b a

a

d
a x b x d d

d
μ⋅ = ≤      (10) 

where µ is the cost of a multiplication a(x)·b(x) in F2[x] of 
db=da.  

Next, using (10), we show assumption 1 is true. In general, a 
random element has degree (n–1) and 1.bd n≤ −  Note that 
M is the same as µ in (10) because the cost of reduction 
modulo, h(x), is virtually zero. Setting da=n–1, we have the 
cost of ( ) ( ) becomes /( 1) .b b ba x b x d n d d Mμ⋅ − = = This 
completes the explanation of assumption 1.  

Now, we consider the cost of (9). First, we compute the 
components of the vector Cp. Then, we compute a matrix 
multiplication (aij)·Cp. Finally, we compute e0 and e6.  

A. Computation of Components of Cp 

To compute the components of the vector Cp, we may 
compute the following sets: 
(i) {f(1), f(x), f(x+1), f(x2), f((x+1) 2)}, 
(ii) {g(1), g(x), g(x+1), g(x2), g((x+1) 2)}, 
(iii) {f(1) ·g(1), f(x) ·g(x), f(x+1) ·g(x+1), f(x2) ·g(x2), 

f((x+1) 2) ·g((x+1) 2)}, 
(iv) {f3·g3, f3·g3·x6, f3·g3·(x+1)6, f3·g3·x12, f3·g3·(x+1)12}, 
(v) { f0·g0}. 

We can compute set (i) using algorithm 3, the cost of which 
is 16M  due to assumption 1. We can also compute set (ii) 
using algorithm 3. Set (iii) needs 5M. We can compute set (iv) 
using algorithm 4, which costs 12M+ M . Finally, we compute 
f0·g0, which costs M. Therefore, we take 7M+ 44M  to 
compute the components of Cp. 

B. Computation of Matrix Multiplication (αij) · Cp  

Suppose Cp is represented as (C0, C1, C2, C3, C4)T with 

2njC F∈ for 0 4.j≤ ≤ Then, to compute (αij)·Cp, we may 
compute αij·Cj for 0 , 4.i j≤ ≤  Here, we consider the 
computation of set 0 0{( ) : 0 4}.i C iα ⋅ ≤ ≤  Note that the set is 
obtained from xkC0 with 0 8,j≤ ≤ and this 8 is the maximum 
degree of αi0. Therefore, the cost of (αi0)·C0 is 8 .M  Similarly, 
the costs of computing sets {(αi1)·C1}, {(αi2)·C2}, {(αi3)·C3},  
and {(αi4)·C4}, are 7 ,M 7 ,M 4 ,M  and 4 ,M  respectively. 
Therefore, we take 8 7 7 4 4 30M M M M M M+ + + + =  to  

Algorithm 3. Computation of f(1), f(x), f(x +1), f(x2), f((x +1)2)

Input: 2 3
0 1 2 3 2 2

( ) [ ],n nf x f f z f z f z F z x F= + + + ∈ ∈  
such that x forms the basis of 

2nF  over F2 
Output: { f(1), f(x), f(x +1), f(x2), f((x +1)2)}  
1: 0 0 1 1 2 2 3 3, , ,T f T f T f T f← ← ← ←  
2: 0 0 1 2 3R T T T T← + + +  

3: 1 1T T x← ⋅     (cost: M ) 

4: 2
2 2T T x← ⋅    (cost: 2M ) 

5: 3
3 3T T x← ⋅    (cost: 3M ) 

6: 1 0 1 2 3R T T T T← + + +  

7: 1 1T T x← ⋅     (cost: M ) 

8: 2
2 2T T x← ⋅    (cost: 2M ) 

9: 3
3 3T T x← ⋅    (cost: 3M ) 

10: 3 0 1 2 3R T T T T← + + +  

11: 2
0 3 ( 1)T f x x← ⋅ + +    (cost: 2M ) 

12: 2 1 1 2 0R R f f T← + + +  

13: 2
0 0 ( 1)T T x x← ⋅ + +    (cost: 2M ) 

14: 4 3 1 2 0R R f f T← + + +  

15:  return {R0, R1, R2, R3, R4} (total cost: 16M ) 

 
compute (αij)·Cp. 

C. Computation of e0 and e6 

We compute 0 0 0( )e f gβ= ⋅ ⋅ and 3 3 3( ).e f gβ= ⋅ ⋅ Recall 
that f0·g0 and f3·g3 were already computed when we computed 
the components of Cp. Thus, the computation of e0 and e6 takes 
16M  because the degree of β is 8.  

D. Total Cost of Proposed Multiplication Method 

From sections IV.2.A, IV.2.B, and IV.2.C, we can evaluate (9)  
with ( )7 90 7 90 /( 1) .M M n M+ = + − The cost is asymptotically  
equal to 7M as n→∞ and is 7.38M in the case of n=239. On the 
other hand, the previous multiplication using the Karatsuba 
method requires 9M for any degree n. We summarize these 
estimations in Table 3.  
 

Table 3. Computation of cost of F←F×G.  

 Any n n = 239 n → ∞

Karatsuba method 9M 9M 9M 
Proposed 

multiplication 
method 

 907
1

M
n

⎛ ⎞+⎜ ⎟−⎝ ⎠
 7.38M 7M 
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Algorithm 4. Computation of f3·g3, ··· , f3·g3·(x+1)12  
Input: 3 3 2

, , nf g x F∈  such that x forms the basis of 

2nF over F2 
Output: {f3 g3, f3 g3x6, f3 g3(x+1) 6, f3 g3x12, f3 g3(x+1) 12} 
1: 3 3T f g← ⋅   (cost: M)  
2: 0 3 2 4, ,R T R T R T← ← ←  

3: 2T T x← ⋅    (cost: 2M ) 
4: 2 2R R T← +  

5: 2T T x← ⋅    (cost: 2M ) 
6: 2 2 4 4,R R T R R T← + ← +  

7: 2T T x← ⋅    (cost: 2M ) 
8: 1 2 2,R T R R T← ← +  

9: 2T T x← ⋅    (cost: 2M ) 
10: 4 4R T R← +  

11: 4T T x← ⋅    (cost: 4M ) 
12: 3 4 4,R T R R T← ← +  

13: return  {R0, R1, R2, R3, R4,}   (total cost: M+12M ) 
 
3. Applying Proposed Multiplication to General Cases 

In this subsection, we discuss applying the proposed 
multiplication to general cases. Recall that the proposed 
multiplication computes relaxed multiplication β·F×G for 

42
, ,nF G F∈  where 

2nFβ ∈  is an element. We easily make 
the general version of the proposed multiplication in any finite 
field nkp

F ; thus, Cp in (9) becomes the (2k–3)th vector and (αij) 
becomes a (2k–3) × (2k–3) matrix. Define np

M as the cost of a 
multiplication in np

F .  
Note that the proposed multiplication is effective in pairing 

computations because β powers to 1 in the final exponentiation 
and has no effect on the pairing value. Then, we consider 
applying the proposed multiplication to other fields in Table 1.  

A. Case of 
3

( ,nF k=6)  

The 
3nF  version of the proposed multiplication takes  

( ) 3
11 /( 1) nn Mγ+ − , where γ is a constant number depending  

on a vector Cp and a matrix (αij) in (9). Therefore, the 63 nF  
version of the proposed multiplication asymptotically takes 

3
11 nM  to compute a relaxed multiplication in 63 nF . However, 
if the Vandermonde matrix Ap is not carefully constructed, then 
γ seems to be very large, and the proposed multiplication incurs 
a greater cost than the GPS multiplication (see [3] or section 
III.3) which takes 

3
15 nM  in practical cases as n is several 

hundred. Finding the vector Cp and the matrix (αij) such that A 
becomes smallest will be the subject of future work.  

B. Case of (Fp, k=any value) 

In this case components of Cp and (αij) are elements in Fp, 
and computation of (αij)·Cp in (9) in general takes (2k–3)2Mp. 
Therefore, the Fp version of the proposed multiplication takes 
more than (2k–3)2Mp, which means the Karatsuba method is 
better than the Fp version of the proposed method.  

V. New Efficient Algorithm for Tη  Pairing  

In this section, we present a new efficient algorithm for 
computing the Tη  pairing using the new multiplication 
method presented in section IV.  

As we described in the last paragraph of section IV.2, if F×G 
(random×random) at step 10 in algorithm 2 is efficiently 
computed, we can obtain an algorithm for computing the Tη  
pairing. Then, we proposed an efficient multiplication method 
computing β·F×G instead of F×G in section IV.4. Recall that β 
powers to 1 in the final exponentiation, and therefore has no 
effect on the pairing value. Consequently, we can obtain a new 
algorithm for computing the Tη  pairing, namely, algorithm 5, 
applying the proposed multiplication method to algorithm 2.  

Note that we need to use the z-basis, not the st-basis, to 
provide the new algorithm for the Tη  pairing. However, the 
conversion between the st-basis and the z-basis is virtually zero 
due to (1). In algorithm 5, steps 2 to 18 are executed using the 
z- basis, and the result of step 18 is converted to a value of the 
st-basis. The output of algorithm 5 is then the same as 
algorithm 2.  

Next, we estimate algorithm 5 without the final 
exponentiation, which can be efficiently computed [7]. Note 
that the cost of each step of algorithm 5 except step 10 is the 
same as those of algorithm 2 due to (1). Let m be the number of 
iterations of the main loop of algorithm 5. Then, the cost of 
algorithm 5 is calculated as  

(the cost of algorithm 5) 
=(the cost of algorithm 2) 

+m · ((the cost of step 9 in algorithm 5) 
–( the cost of step 9 in algorithm 2)) 

=((3.5n+4.5)M+(n-1)S+(n–1)R)+m·((7+90/(n–1))M-9M 

because the cost of algorithm 2 is (3.5n+4.5)M+(n–1)S+(n–1)R 
as described in section II, where M, S, and R are the cost of a 
multiplication, a squaring, and a square root in 

2nF , 
respectively. Note m=(n–1)/4 if 1n ≡ (mod 4), and  
m=(n+1)/4 if 3n ≡ (mod 4). Then, we have the cost of 
algorithm 5 as ((3n2+24.5n–27.5)/(n–1))M+(n–1)R+(n–1)S if 

1n ≡ (mod 4) and as ((3n2+23.5n+18.5)/(n–1))M+(n–1) 
R+(n–1)S if 3n ≡  (mod 4).  
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Algorithm 5. Proposed algorithm for Tη pairing 

Input:
2

( , ), ( , ) ( )n
bP Q E Fα β γ δ= = ∈   

Output: 4
*

2
( , ) nT P Q Fη ∈  

1: 1
2

nw α −⎡ ⎤← + ⎢ ⎥⎣ ⎦
 

2: ( 1) / 2( 1) ( )nF w bγ α δ β ε +← ⋅ + + + + + +  
2( 1) ( )w z w zγ γ+ + + + +    (cost : M) 

3: for i=0 to ( 3) / 4n −⎢ ⎥⎣ ⎦  do 

4: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦
  

5: 0 ( 1) / 2
1 ( )

2 n
nG w bγ δ β ε −

⎛ ⎞+⎡ ⎤← ⋅ + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
  

2( 1) ( )w z w zγ γ+ + + + + (G0 is z-sparse, cost: M) 

6: 2 2, , ,α α β β γ γ δ δ← ← ← ←  (cost: 2R+2S) 

7: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦
  

8: 1 ( 1) / 2
1 ( )

2 n
nG w bγ δ β ε −

⎛ ⎞+⎡ ⎤← ⋅ + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
   

2( 1) ( )w z w zγ γ+ + + + + (G1 is z-sparse, cost: M) 

9: G←G0⋈G1   (cost: 3M) 
10: F←β·F×G , where β =x8+x6+x5+x3  
        (computed by (9), cost: by Table 3) 
11: 2 2, , ,α α β β γ γ δ δ← ← ← ←  (cost: 2R+2S) 

(11 is unnecessary if 3n ≡ (mod 4) for i= ( 3) / 4n −⎢ ⎥⎣ ⎦ )
12: end if 
13: if 1i ≡ (mod 4) then 

14: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦
 

15: 0 ( 1) / 2
1 ( )

2 n
nG w bγ δ β ε −

⎛ ⎞+⎡ ⎤← ⋅ + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
  

      2( 1) ( )w z w zγ γ+ + + + + (G0 is z-sparse, cost: M)  

16: F←F⋊G    (cost : 6M)  
17: end if 
18: (f0, f1, f2, f3)z←FW  (cost: FE) 
19: return (f0, f2+f3, f1+ f2+ f3, f3)st  

 
We aim to estimate the costs of algorithms 1, 2, and 5 using 

only M to easily compare the proposed algorithm 5 with the 
conventional algorithms 1 and 2. We then need a relationship 
among M, S, and R. Suppose that R=0.5M as followed by 
Kwon [7]. Note that 

21/ 2 2n

a a
−

=  for any 
2na F∈  because  

2 .
n

a a= Therefore, (n–2)S=R, that is, 1/(2 4) .S n M= − ⋅  
The comparison is shown in Table 4. 

Table 4. Cost comparison between algorithms 1 and 2 and algorithm 5.

 n=239 n → ∞  
Algorithms 1 and 2 960.5M 4nM 

Proposed algorithm 5 863.2M 3.5nM 

Table 5. Comparison of multiplication cost in 42 nF . 

Number of multiplications 
in 42 nF  Cost 

Without loop unrolling 
(n+1)/2       

“sparse by random” 
3(n+1)M    (Karatsuba) 

With loop unrolling 
(n+1)/4       

“sparse by sparse” 
0.75(n+1)M  (Karatsuba) 

(n+1)/4      
“random by random” 

2.25(n+1)M  (Karatsuba or GPS) 
1.75(n+1)M (Proposed) 

Total 
3 (n+1)M    (Karatsuba or GPS ) 
2.5 (n+1)M  (Proposed) 

 
 

Therefore, the cost of computing the Tη  pairing is reduced 
by 11.3% and 14.3% for n=239 and n → ∞ , respectively. 

VI. Conclusion 

The loop unrolling technique and the GPS multiplication are 
effective in the Tη  pairing on supersingular curve in 
characteristic three. However, they are ineffective in the Tη  
pairing in characteristic two. In the case of characteristic two, 
the loop unrolling technique changes (n+1)/2 multiplications of 
“sparse element by random element” in 42 nF in the algorithm 
for computing the Tη  pairing (algorithm 1) to (n+1)/4 “sparse 
by sparse” multiplications and (n+1)/4 “random by random” 
multiplications. Note that multiplications of a “sparse by 
random,” a “sparse by sparse,” and a “random by random” in 

42 nF  take 6M, 3M, and 9M, respectively, using the Karatsuba 
method, where M means the cost of a multiplication in 

2nF . 
The GPS multiplication is a method to compute a 
multiplication of “random by random,” and in the case of 42 nF  
the GPS multiplication incurs the same cost as the Karatsuba 
method. Then, the loop unrolling technique and the GPS 
multiplication are ineffective in the Tη pairing in characteristic 
two.  

We introduced a relaxed multiplication which computes 
β·F×G instead of F×G for 42

, ,nF G F∈  where β is an 
element in 

2nF . The β powers to 1 in the final exponentiation 
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and therefore has no effect on the pairing value. The relaxed 
multiplication can be computed using the Vandermonde matrix, 
the inverse of which has coefficients of small degrees. The 
multiplication in 42 nF  can be computed by 7 multiplications 
in 

2nF for n → ∞ , while the previously fastest Karatsuba 
method requires 9 multiplications. Consequently, the cost of 
the Tη  pairing computation is reduced by 14.3% as n → ∞ . 

Appendix. Sparse Multiplication 

To describe the cost of (c) in Table 3, we provide the 
algorithms A1 and A2 for computing a multiplication of (st, z)-
sparse elements in 42 nF .  

 
Algorithm A1. Multiplication of st-sparse elements in 42 nF

Input: st-sparse a=(a0, a1, 1, 0)st, 40 1 2
( , ,1,0) nstb b b F= ∈  

Output: c=(c0, c 1, c2, c3)st:=a⋈b 
1: 0 0 0T a b← ⋅   (cost: M)  
2: 1 1 1T a b← ⋅    (cost: M) 
3: 2 0 1 0 1( ) ( )T a a b b← + ⋅ +   (cost: M) 
4: 0 0 1R T T← +  
5: 1 0 2 1R T T← + +  
6: 2 0 0 1R a b← + +  
7: 3 1 1R a b← +  
8: return (R0, R1, R2, R3)st 

 
Algorithm A2. Multiplication of z-sparse elements in 42 nF  

Input: z-sparse a=(a0, a1+1, a1, 0)z, b=(b0, b1+1, b1, 0)z 42 nF∈

Output: c=(c0, c 1, c2, c3)z:=a⋈b 
1: 0 0 0T a b← ⋅   (cost: M)  
2: 1 1 1T a b← ⋅    (cost: M)  
3: 2 0 1 0 1( ) ( )T a a b b← + ⋅ +   (cost: M)  
4: 0 0 1R T T← +  
5: 1 0 2 0 0R T T a b← + + +  
6: 2 0 2 1 1 1R T T a b← + + + +  
7: 3 1 1R a b← +  
8: return (R0, R1, R2, R3)z 
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