
ETRI Journal, Volume 31, Number 2, April 2009 © 2009 Masaaki Shirase et al. 129

This paper provides an efficient algorithm for
computing the Tη pairing on supersingular elliptic curves
over fields of characteristic two. In the proposed algorithm,
we deploy a modified multiplication in 42 nF using the
Vandermonde matrix. For 42

, ,nF G F∈ the proposed
multiplication method computes F Gβ ⋅ ⋅ instead of
F G⋅ with some *

2nFβ ∈ because β is eliminated by the
final exponentiation of the Tη pairing computation. The
proposed multiplication method asymptotically requires
only 7 multiplications in

2nF as n → ∞ , while the cost of
the previously fastest Karatsuba method is 9
multiplications in

2nF . Consequently, the cost of the Tη
pairing computation is reduced by 14.3%.

Keywords: Cryptography, Tη pairing, finite field, loop
unrolling, Vandermonde matrix.

Manuscript received May 31, 2008; revised Dec 17, 2008; accepted Dec. 24, 2008.
This work was supported by the IT R&D program of MKE/IITA [2009-F-055-01,

Development of the Technology of Side Channel Attack Countermeasure Primitives and
Security Validation], Rep. of Korea.

Masaaki Shirase (phone: +81 138 34 6476, email: shirase@fun.ac.jp) and Tsuyoshi Takagi
(email: takagi@fun.ac.jp) are with School of Systems Information Science, Future University
Hakodate, Hokkaido, Japan.

Dooho Choi (email: dhchoi@etri.re.kr) is with Software & Content Research Laboratory,
ETRI, Daejeon, Rep. of Korea.

DongGuk Han (email: christa@kookmin.ac.kr) was with Software & Content Research
Laboratory, ETRI, Daejeon, Rep. of Korea., and is currently with the Department of
Mathematics, Kookmin University, Seoul, Rep. of Korea.

Howon Kim (email: howonkim@pusan.ac.kr) is with the Department of Computer
Engineering Information, Pusan National University, Busan, Rep. of Korea.

I. Introduction

Pairings have been attractive for cryptography, and the Tη
pairing proposed by Barreto and others [1] is one of the fastest
pairings. The Tη pairing is defined on supersingular elliptic
curves over finite fields of characteristic two or three. In this
paper, we particularly focus on the Tη pairing on
supersingular elliptic curves in characteristic two because it is
more suitable for implementation on computers. The speed for
the Tη pairing in characteristic two bottlenecks at the
multiplications in the 4th extension field 42 nF . For Tη
pairing in characteristic three, there are two methods to
improve the speed of the extension field: the loop unrolling
technique [2] and an efficient multiplication by discrete Fourier
transformation (DFT) [3]. This paper extends these methods
for extension field 42 nF .

A loop unrolling technique tries to reduce the number of
multiplications in a finite field by merging two or more
iterations of a loop into one. In the case of characteristic three,
the loop unrolling technique makes the Tη pairing fast [2]. On
the other hand, if we directly apply it to the case of
characteristic two, it becomes no more efficient than it would
be without loop unrolling. However, the loop unrolling
technique provides us with an efficient pairing algorithm if we
modify an efficient multiplication method in 42 nF .

The Karatsuba method [4] has been used to efficiently
compute multiplications in extension fields. Gorla and others
proposed an efficient multiplication method in 63 nF using the
DFT matrix [3]. We call it the GPS multiplication in this paper,
in accordance with the authors’ names. However, if we apply
this multiplication directly to a case of characteristic two, the
cost of multiplication in 42 nF with this method is the same as

Efficient Computation of Eta Pairing over
Binary Field with Vandermonde Matrix

 Masaaki Shirase, Tsuyoshi Takagi, Dooho Choi, DongGuk Han, and Howon Kim

130 Masaaki Shirase et al. ETRI Journal, Volume 31, Number 2, April 2009

that with the conventional Karatsuba method.
This paper proposes a faster algorithm for computing the

Tη pairing over
2nF using loop unrolling and the improved

extension field multiplication in 42 nF with the Vandermonde
matrix. We may compute F Gβ ⋅ ⋅ instead of F G⋅ for any

42
, nF G F∈ and *

2nFβ ∈ in an algorithm for computing the

Tη pairing because β powers to 1 in the final exponentiation,
and has no effect on the pairing value. Therefore, the improved
multiplication method computes the multiplication F Gβ ⋅ ⋅ .
The cost of the improved multiplication method is
asymptotically 7 multiplications in

2nF as n → ∞ . Note that
a multiplication F G⋅ requires 9 multiplications in

2nF with
the Karatsuba method. Combining the loop unrolling technique
and the proposed multiplication method, we can achieve an
efficient algorithm for computing the Tη pairing.

The remainder of this paper is organized as follows. In
section II, we provide a loop unrolling algorithm for computing
the Tη pairing over

2
.nF In section III, we describe

polynomial multiplication. In section IV, we propose a
multiplication method in 42 nF for the Tη pairing and
estimate the cost. In section V, we apply the proposed method
to an algorithm for computing the Tη pairing. Last, in section
VI, we conclude this paper.

II. Tη Pairing in Characteristic Two

A pairing e used in cryptography such as the Tη pairing,
the Tate pairing, and the Ate pairing [5] are forms of bilinear
mapping,

1 2: ,knp
e G G F× →

where G1 is a group based on 2(),np
E F G is a group based on

()np
E F or (),knp

E F E is an elliptic curve defined over np
F ,

and k denotes the embedding degree. Table 1 shows the
relationships among pairings, finite fields, and embedding
degrees.

In this paper, we deal with the Tη pairing defined on
supersingular elliptic curve

2 3: , {0,1},bE Y Y X X b b+ = + + ∈

Table 1. Embedding degree k for pairings.

Pairing Tη or Tate Tate or Ate

Field 3nF
 3nF

 np
F

k 4 6 2, 6, 12, or more

over
2nF , where n is a large enough prime for security of the

Tη pairing. Then, n is an odd integer. The Tη pairing is a
bilinear mapping

4
*

2 2 2
: () () ,n n n

b b
T E F E F Fη × →

and is defined as
2 ,

(,) (())n
W

T P
P Q f Qη ψ= for

2
, (),n

bP Q E F∈
where

2 ,n P
f is a function such that its divisor satisfies

2 ,
div () 2 () ([2]) (2 1)div().n

n n n
p

f p p= − − − ∞

Here, ψ is the distortion map defined as
2: (,) (,),x y x s y sx tψ → + + + where s2=s+1 and t2=t+s, and

W is an integer defined as 2 (1) / 2(2 1)(2 1 2),n n nW ε += − + −
where

1, if 1,7 (mod 8) and 1
or 3,5(mod 8) and 0,

1, otherwise.

n b
n bε

− ≡ =⎧
⎪= ≡ =⎨
⎪
⎩

Algorithm 1. Original algorithm for Tη pairing [6].

Input:
2

(,), (,) ()n
bP Q E Fα β γ β= = ∈

Output: 4
*

2
(,) nT P Q Fη ∈

1: 1
2

nw α −⎡ ⎤← + ⎢ ⎥⎣ ⎦

2:
 (1) / 2(1) () ()

(cost:)
nF w b w s t

M

γ α δ β ε γ+← ⋅ + + + + + + + + +

3: for i=0 to (n-1)/2 do

4: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦

5: (1) / 2
1 () ()

2 n
nF w b w s tγ δ β ε γ−

⎛ ⎞+⎡ ⎤← ⋅ + + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
(G is st-sparse, cost: M)

6: G ← F⋊G (cost: 6M)
7: if i<(n-1)/2 then
8: 2 2, , , (cost: 2 2)R Sα α β β γ γ δ δ← ← ← ← +
9: end if

10: end for
11: return FW (cost: FE)

Algorithm 1 is efficient for computing the Tη pairing [6].
In this algorithm, elements in 42 nF are represented with a
basis {1, s, t, st}. This basis is called the st-basis, and we denote
by (a0, a1, a2, a3)st the element a0+a1s+a2t+a3st in 42 nF for

0 1 2 3 2
, , , .na a a a F∈ We also use another basis of 42 nF , namely,

the z-basis {1, z, z2, z3} defined by the irreducible polynomial
h(z)=z4+z+1 over

2nF . We denote by (b0, b1, b2, b3)z the
element 4

2
0 1 2 3 2

.nb b z b z b F+ + + ∈ We can transform between

ETRI Journal, Volume 31, Number 2, April 2009 Masaaki Shirase et al. 131

the st-basis and the z-basis virtually for free. Indeed, we have
the following conversion algorithm for (a0, a1, a2, a3)st=(b0, b1,
b2, b3)z:

0 0

1 1

2 2

3 3

0 0

1 1

2 2

3 3

1 0 0 0
0 1 1 0

,
0 1 0 1
0 0 0 1

1 0 0 0
0 0 1 1

.
0 1 1 1
0 0 0 1

b a
b a
b a
b a

a b
a b
a b
a b

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 (1)

The notations used in algorithm 1 are defined as follows:

0, if 0,1 (mod 4)
1, otherwise,

[] mod 2,

m

m

m m

ε
≡⎧

= ⎨
⎩

=

where n is the extension degree of
2nF over F2, and m is an

integer. Powering by W at step 11 in algorithm 1 is called the
final exponentiation, which can be efficiently computed [7].

We define symbols M, S, R, and F as follows:

M= the cost of a multiplication in
2

,nF
S= the cost of a squaring in

2
,nF

R= the cost of a square root in
2

,nF
FE= the cost of the final exponentiation.

Note that G at step 5 is the form of (g0, g1, 1, 0)st for

0 1 2
, ,ng g F∈ where ()0 (1) / 2[(1) / 2] ()ng w n bγ δ β ε −= ⋅ + + + + + +

and g1=w+γ. Such an element is called st-sparse in this paper.
Note that the st-sparse element (g0, g1, 1, 0)st is converted to
(g0, g1+1, g1, 0)z. We then call this element z-sparse. Note that
there is no difference between the cost of multiplications using
the st-basis and the cost of multiplications using the z-basis due
to (1). Now we distinguish among three multiplications in

42 nF :

(a) random element by random element: ×
(b) random element by (st, z)-sparse element: ⋊
(c) (st, z)-sparse element by (st, z)-sparse element: ⋈

where the random element is the form of (g0, g1, g2, g3)st (or (g0,
g1, g2, g3)st) for 0 1 2 3 2

g , g , g , g .nF∈ We use “·” for
multiplication of elements in

2nF and polynomials with
coefficients in

2nF .
The cost of each multiplication is shown in Table 2.

Multiplication (a) is computed by the Karatsuba method, and
the computation of (b) is proposed in [1]. We show that (c) can

Table 2. Multiplication symbols in 42 nF and cost.

 a b cost

(a) a×b Random Random 9M
(b) a b Random (st, z)-sparse 6M ([1])
(c) a b (st, z)-sparse (st, z)-sparse 3M

be computed with the cost of 3M in the appendix.

Now, we estimate the cost (the number of multiplications) of
algorithm 1. The cost of each step is written at the end of each
step. For example, step 2 takes M of “ (1).w aγ⋅ + + ” Steps 1
and 2 are the initialization, with a cost of M. Steps 3 to 8 are the
main loop. Note that the number of iterations of the main loop,
except from steps 3 to 6, is (1) / 2n + , and the number of
iterations of steps 3 to 6 is (1) / 2n − , where n is an odd
integer. Then, the cost of the main loop is
(1) / 2 7 (1) / 2 (2 2).n M n R S+ ⋅ + − ⋅ + Step 11 is the final
exponentiation, with a cost of FE. Therefore, the total cost of
algorithm 1 is (3.5 4.5) (1) (1) .En M n S n R F+ + − + − +

1. Loop Unrolling Technique

We might be able to enhance the speed of the Tη pairing
by unrolling the loop. Indeed, the unrolling technique is
effective in the case of characteristic three [2], [8].

Algorithm 2 is the loop unrolling algorithm for computing
the Tη pairing over

2nF based on algorithm 1. Algorithm 2
merges with algorithm 1 such that “F←F⋊G” at step 6 in the
2i-th and (2i+1)th iterations of algorithm 1 corresponds to
“G←G0⋈G1” at step 9 and “F←F×G” at step 10 in the i-th
iteration of algorithm 2.

Note that “F←F⋊G” of algorithm 1 takes 6M because F is
random and G is sparse. On the other hand, “G←G0⋈G1” and
“F←F×G” of algorithm 2 take 3M and 9M, respectively,
because G0 and G1 are sparse and F is random. The number of
iterations of algorithm 1 is twice that of algorithm 2. The cost
of algorithm 2 is the same as that of algorithm 1, that
is, (3.5 4.5) (1) (1) ,En M n M n S F+ + − + − + because 6M+6M=
3M+9M.

Also note that if there was a multiplication method for F×G,
namely, random element by random element, with a cost less
than 9M, algorithm 2 would be more efficient than algorithm 1.
Our goal is to find such a method.

III. Polynomial Multiplication

Multiplication in a finite field consists of polynomial
multiplication and reduction modulo an irreducible polynomial.

132 Masaaki Shirase et al. ETRI Journal, Volume 31, Number 2, April 2009

Algorithm 2. Loop unrolling algorithm for Tη pairing

Input:
2

(,), (,) ()n
bP Q E Fα β γ δ= = ∈

Output: 4
*

2
(,) nT P Q Fη ∈

1: 1
2

nw α −⎡ ⎤← + ⎢ ⎥⎣ ⎦

2:
 (1) / 2(1) () ()

(cost:)
nF w b w s t

M

γ α δ β ε γ+← ⋅ + + + + + + + + +

3: for i=0 to (3) / 4n −⎢ ⎥⎣ ⎦ do

4: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦

5: 0 (1) / 2
1 () ()

2 n
nG w b w s tγ β ε γ−

⎛ ⎞+⎡ ⎤← ⋅ + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

(G0 is st-sparse, cost: M)
6: 2 2, , , (cost : 2 2)R Sα α β β γ γ δ δ← ← ← ← +

7: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦

8: 1 (1) / 2
1 () () ,

2 n
nG w b w s tγ δ β ε γ−

⎛ ⎞+⎡ ⎤← ⋅ + + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
(G1 is st-sparse, cost: M)

9: G←G0⋈G1 (cost: 3M)
10: F←F×G (cost: 9M)
11: 2 2, , , (cost: 2 2)R Sα α β β γ γ δ δ← ← ← ← +

(11 is unnecessary if 3n ≡ (mod 4) for (3) / 4i n= −⎢ ⎥⎣ ⎦)
12: end for
13: if 1 (mod 4)i ≡ then

14: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦

15: 0 (1) / 2
1 () () ,

2 n
nG w b w s tγ δ β ε γ−

⎛ ⎞+⎡ ⎤← ⋅ + + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
(G0 is st-sparse, cost: M)

16: F←F⋊G (cost: 6M)
17: end if
18: return FW (cost: FE)

In this section, we focus on polynomial multiplication.

Let F be a finite field. We deal with three methods for
multiplying polynomials a(z)·b(z) with coefficients in F. The
first method is based on the Vandermonde matrix (VM)
method [9]. The second one is based on the discrete Fourier
transform (DFT) method [9]. The third one was proposed by
Gorla, Puttmann, and Shokrollahi [3], and we call it the GPS
multiplication in accordance with the authors’ names. The DFT
method is an improvement of the VM method, and the GPS
multiplication is an improvement of the DFT method.

Let a(z), b(z) be polynomials of degree k–1with coefficients
with F. We consider polynomial multiplications of
c(z)=a(z)·b(z) and denote them by

2 1
0 1 2 1

2 1
0 1 2 1

2 2 2
0 1 2 2 2

() ,

() ,

() .

k
k

k
k

k
k

a z a a z a z a z

b z b b z b z b z

c z c c z c z c z

−
−

−
−

−
−

= + + + +

= + + + +

= + + + +

 (2)

Note that c0=a0·b0 and c2k-2= ak-1· bk-1.

1. VM Method

Substituting z α= in (2), we obtain
2 2 2

0 1 2 2 2() () () k
ka b c c c c cα α α α α α −

−⋅ = = + + + +

for any Fα ∈ ; thus,
2 2 2

0 0 0 0 0 0
2 2 2

1 1 11 1 1

2 2 2
2 2 2 2 2 22 2 2 2 2 2

1 () ()
() ()1

() ()1

k

k

k
k k kk k k

V VV

c a b
c a b

c a b
B CA

α α α α α
α αα α α

α αα α α

−

−

−
− − −− − −

⎛ ⎞ ⋅⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

(3)
holds for 2k–1 elements 0 1 2 2, , , .k Fα α α − ∈ The matrix AV
in (3) is called the VM. If this matrix is regular, then we can
compute the vector CV, namely, c(z), by

 1 .V V VB A C−= ⋅ (4)

2. DFT Method

We assume that F contains the primitive (2k–1)th root of
unity. Let ξ be this root of unity in F. By setting i

iα ξ= in
(4), we obtain

0
2 3

1

2 2 2 22 2 2
2 2

1 1 1 (1) (1)
() ()11 .

2 1
() ()1

k

k kk
k

a bc
a bc

k
c a b

ξ ξξ ξ

ξ ξξ ξ

−

− −−
−

⎛ ⎞ ⋅⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⋅⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ −
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

The computation of c(z)=a(z)·b(z) by the above matrix is
called the DFT method.

Here, c(z) is computed with (2k–1) multiplications
2 2 2 2((1) (1), () (), , () ())k ka b a b a bξ ξ ξ ξ− −⋅ ⋅ ⋅ and one

division by 2k–1 in F under the following assumptions:

(i) The cost of multiplication of iξ by each element in F is
virtually zero,

(ii) The cost of computations of ()ia ξ and ()jb ξ with
0 , 2 2i j k≤ ≤ − is virtually zero, and

(iii) (2k–1) is not equal to the characteristic of F.

ETRI Journal, Volume 31, Number 2, April 2009 Masaaki Shirase et al. 133

However, it seems hard to satisfy all three conditions for many
finite fields, especially the finite fields for the Tη pairing (see
the next sections).

3. GPS Multiplication for 63 nF [3]

In the case of characteristic three, the algorithm for
computing the Tη pairing includes computations of
multiplications in 63 nF , where n is a prime. Unfortunately, the
DFT method cannot be used for multiplications in field 63 nF
because the 11th (11=2×6-1) primitive root of unity is not
contained in

3nF .
The GPS multiplication tries to efficiently compute a

multiplication in 63 nF by modifying the DFT method in the
third extension field 63 nF over 23 nF . Now we consider a
polynomial multiplication with coefficients in 23 nF of degree
2, that is,

2 2
0 1 2 0 1 2

2 3 4
0 1 2 3 4

() ()

.

a a z a z b b z b z

c c z c z c z c z

+ + ⋅ + +

= + + + +
 (5)

Elements in 23 nF are represented as 0 1 0 1 3
{ : , },nu u u u Fσ+ ∈

where 2 1,σ = − and σ is the fourth primitive root of unity
in 23 nF . Then we obtain

2 2 4
0 1 2 0 1 2 4

2 3 3
0 1 2 3

(()) (()) ()

() ()

i i i i i

i i i

a a a b b b c

c c c c

σ σ σ σ σ

σ σ σ

+ + ⋅ + + −

= + + +

by setting iz σ= in (5) for i=0, 1, 2, 3. They yield the
following matrix equation:

40
42 3

41
2 4 6 2 2 8

2 4
3 6 9 3 3 12

3 4

(1) (1)1 1 1 1
() ()1

.
1 () ()
1 () ()

a b cc
a b cc

c a b c
c a b c

σ σ σσ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

⋅ −⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ −⎝ ⎠⎝ ⎠ ⎝ ⎠

 (6)

Because 2 1σ = − and c4=a2·b2, (6) can be eventually
converted as follows:

2 20

2 21
2 2

2 2 2
3 3

3 2 2

(1) (1)1 1 1 1
() ()1 1

.
1 1 1 1 () ()
1 1 () ()

a b a bc
a b a bc

c a b a b
c a b a b

σ σσ σ
σ σ

σ σ σ σ

⋅ − ⋅⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⋅ − ⋅− − ⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⋅ − ⋅
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⋅ − ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠

 (7)

Note that the cost of multiplication of σ by any element in
23 nF is virtually zero because 0 1 1 0()u u u uσ σ σ+ ⋅ = − + ,

where 20 1 0 13 3
(,).n nu u F u u Fσ+ ∈ ∈ Therefore, the cost of

computing (7) is 5 multiplications in 23 nF . A multiplication in
63 nF can be computed with 15 multiplications in

3nF by using
the Karatsuba method for the multiplication in 23 nF .

4. Application of DFT Method and GPS Multiplication
 to 42 nF

In the algorithm for computing the Tη pairing over
2nF , we

need multiplications in 42 nF . Here, we consider whether we
can apply the DFT method and the GPS multiplication to finite
field 42 nF .

There is no 7th (7=2×4-1) primitive root of unity in
2nF , so

we cannot apply the DFT method to 42 nF .
We can apply the GPS multiplication to 42 nF because there

is a 2nd (2=2×2-2) primitive root of unity in 22 nF . Then, the
cost of a multiplication in 42 nF by the GPS multiplication is
equal to 3 (=2×2-1) multiplications in 22 nF , that is, 9M, where
M means the cost of a multiplication in

2nF as defined in
section II. However, the Karatsuba method also provides a
multiplication method with a cost of 9M. Therefore, the GPS
multiplication cannot reduce the cost in the case of
characteristic two as it can in the case of characteristic three.

IV. Proposed Multiplication for Tη Pairing

In this section, we present the proposed multiplication
method, which is an improvement of the VM method over

42
.nF The main idea is to deploy the computations of

*
2

()nF G Fβ β⋅ × ∈ instead of F×G in algorithm 2, where
42

, .nF G F∈ Note that 1Wβ = holds, where powering by W
is the final exponentiation of the Tη pairing; thus, we can
deal with the relaxed multiplication F Gβ ⋅ × in the
following subsection.

1. Main Idea

Here we discuss how to modify the multiplication F×G at step
10 in algorithm 2, where 42

, .nF G F∈ Let us use the z-basis of
42 nF over

2
,nF which has a definition polynomial of h(z)=z4+z+1.

Let F=f(z) and G=g(z), where 2 3
0 1 2 3()f z f f z f z f z= + + +

and 2 3
0 1 2 3() ,g z g g z g z g z= + + + for

2
, .ni jf g F∈ To

evaluate F×G, we try to compute polynomial

2 3 4 5 6
0 1 2 3 4 5 6() ,e z e e z e z e z e z e z e z= + + + + + + (8)

where e(z)=f(z)·g(z). Then F×G can be obtained by
F×G=e(z) mod h(z).

First, we note that e0 and e6 can be easily computed, that is,
e0=f0·g0 and e6=f3·g3. Next, we explain how to find the other
coefficients e1, e2, e3, e4, and e5 using the VM method.

Let {1, x,···, xn-1} be a polynomial basis of
2nF

over F2.

Substituting z=1, x, x+1, x2, (x+1)2 for e(z)=f(z)·g(z), we have
the following relationship:

134 Masaaki Shirase et al. ETRI Journal, Volume 31, Number 2, April 2009

1
2 3 4 5

2
2 3 4 5

3
2 4 6 8 10

4

2 4 6 8 10
5

0 0 3 3
6

0 0 3 3

1 1 1 1 1

1 (1) (1) (1) (1)

(1) (1) (1) (1) (1)

(1) (1)

() ()

(

PP

e
x x x x x e

x x x x x e
ex x x x x
ex x x x x
BA

f g f g f g

f x g x f g f g x

f

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ + + + +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟+ + + + + ⎝ ⎠⎝ ⎠

⋅ + ⋅ + ⋅

⋅ + ⋅ + ⋅ ⋅

= 6
0 0 3 3

2 2 12
0 0 3 3

2 2 12
0 0 3 3

1) (1) (1) .

() ()

((1)) ((1)) (1)

P

x g x f g f g x

f x g x f g f g x

f x g x f g f g x

C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+ ⋅ + + ⋅ + ⋅ ⋅ +⎜ ⎟
⎜ ⎟⋅ + ⋅ + ⋅ ⋅
⎜ ⎟⎜ ⎟+ ⋅ + + ⋅ + ⋅ ⋅ +⎝ ⎠

Here, the VM Ap is regular; thus, we can compute e1, e2, e3, e4,
and e5 by 1

p p pB A C−= ⋅ . Next, we present an explicit
representation of 1 1/ ()p ijA β α− = ⋅ for i, j=0,1,2,3,4 where αij
and β are obtained by the following equations1):

α00 = x8+x6+x5+x3,
α20 = x6+x5+x4+x3+ 1,
α40 = x2+x+1,
α11 = x7+x6+x5+x4+x3+ x,
α31 = x3+x,
α02 = x7+x6+x5+x4,
α22 = x6+x5+x4+x3+ x2+ x,
α42 = x2+x,
α13 = x4+x3+x2+ 1,
α33 = x2+ 1,
α04 = x4+ x3,
α24 = x2+ x+1,
α44 = 1,

α10 = x6+x5+x4+x3+ x2+ x,
α30 = 0,
α01 = x7+x3,
α21 = x6+x5+x4+x3+ x2+ x,
α41 = x2+x,
α12 = x7+x2,
α32 = x3+x2,
α03 = x4+x3+x2+ x,
α23 = x2+x+ 1,
α43 = 1,
α14 = x4+ x3+x,
α34 = x2,
β = x8+x6+x5+ x3.

Note that these equations are calculated with coefficients in F2.
For example, the (0, 0)-component of Ap·(αij) is computed as

00 10 20 30 40
8 6 5 4 3 2

8 6 5 3

3 3 2 3 2 2 2

.

x x x x x x x
x x x x

α α α α α

β

+ + + +

= + + + + + + +

= + + +
=

Here, 1/ ()p ij pB Cβ α= ⋅ ⋅ is a formula computing
e(z)=f(z)·g(z) of (8). However, it still has an inversion of 1/ ,β
which is relatively slow. Recall that multiplying intermediate
values in algorithm 2 by any element *

2nr F∈ has no effect on
the pairing value due to the final exponentiation because rw=1.
Therefore, dividing by β is not necessary because

1) We found them using PARI/GP [10].

*
2

1/ .nFβ ∈ Thus, we eventually obtain a new formula
computing e(z)=β·f(z)·g(z) as follows:

T
1 2 3 4 5

0 0 0

6 3 3

() () ,

(),
().

ij pe e e e e C

e f g
e f g

α

β
β

⎧ = ⋅
⎪

= ⋅ ⋅⎨
⎪ = ⋅ ⋅⎩

 (9)

Note that after computation of (9), we need a computation
2 3 4 5 6

0 1 2 3 4 5 6()e e z e z e z e z e z e z+ + + + + + mod h(z), where
h(z)=z4+z+1.

2. Cost of Proposed Multiplication Method

The proposed multiplication method consists of computing
e(z)=β·f(z)·g(z) using (9) and the reduction e(z) mod h(z).

First we deal with the cost of the reduction modulo
h(z)=z4+z+1. This modulo is the following linear transform:

2 3 4 5 6
0 1 2 3 4 5 6

2 3
0 4 1 4 5 2 5 6 3 6

() mod ()

() () () () .

e e z e z e z e z e z e z h z

e e e e e z e e e z e e z

+ + + + + +

= + + + + + + + + +

Hence, the cost of the reduction e(z) mod f(z) is virtually zero.
It is then enough to consider the cost of computing (9), that is,
e(z)=β·f(z)·g(z).

Next, we discuss the cost of computing e(z)=β·f(z)·g(z). To
estimate the cost of the proposed multiplication method, we
have to consider the multiplication with polynomials of very
small degrees. Define M as

1 ,
1

M M
n

=
−

where M is the cost of a multiplication in
2nF as defined in

section II. We assume the following cost for the multiplication
with polynomials of very small degrees.

Assumption 1. Let a be a random element in
2nF , and let b

be an element of degree db in
2nF . Then, the cost of a

multiplication a·b in
2nF becomes .bd M

Although the cost of multiplication depends on the
implementation of a multiplication, assumption 1 is correct
when the multiplication is implemented by the shift-addition
method [11] or its variations using window methods [4], [11],
[12], which are basic multiplication methods. We can explain
how assumption 1 holds.

First, we consider a multiplication of polynomials a(x)·b(x)
in F2[x] by the shift-addition method or its variations using
window methods. The basic step of their algorithms is to shift
a(x) from right to left (or left to right) and perform addition
a(x)+b(x) based on each coefficient of b(x). The shift-addition
method requires dadb shifts and 0.5 a bd d additions in F2, where
da and db are the degree of a(x), and the degree of b(x),

ETRI Journal, Volume 31, Number 2, April 2009 Masaaki Shirase et al. 135

respectively. The number of shifts and additions in the
variations of the shift-addition method using the window
methods of width w requires O(db2w) in a precomputation stage
and O(/)a bd d w in the main loop. The constant term of O
notation depends on the underlying window method. Therefore,
the ratio of a(x)·b(x) in F2[x] of db=da over b ad d≤ is equal
to /b ad d . Then, we have

the cost of () () , when ,b
b a

a

d
a x b x d d

d
μ⋅ = ≤ (10)

where µ is the cost of a multiplication a(x)·b(x) in F2[x] of
db=da.

Next, using (10), we show assumption 1 is true. In general, a
random element has degree (n–1) and 1.bd n≤ − Note that
M is the same as µ in (10) because the cost of reduction
modulo, h(x), is virtually zero. Setting da=n–1, we have the
cost of () () becomes /(1) .b b ba x b x d n d d Mμ⋅ − = = This
completes the explanation of assumption 1.

Now, we consider the cost of (9). First, we compute the
components of the vector Cp. Then, we compute a matrix
multiplication (aij)·Cp. Finally, we compute e0 and e6.

A. Computation of Components of Cp

To compute the components of the vector Cp, we may
compute the following sets:
(i) {f(1), f(x), f(x+1), f(x2), f((x+1) 2)},
(ii) {g(1), g(x), g(x+1), g(x2), g((x+1) 2)},
(iii) {f(1) ·g(1), f(x) ·g(x), f(x+1) ·g(x+1), f(x2) ·g(x2),

f((x+1) 2) ·g((x+1) 2)},
(iv) {f3·g3, f3·g3·x6, f3·g3·(x+1)6, f3·g3·x12, f3·g3·(x+1)12},
(v) { f0·g0}.

We can compute set (i) using algorithm 3, the cost of which
is 16M due to assumption 1. We can also compute set (ii)
using algorithm 3. Set (iii) needs 5M. We can compute set (iv)
using algorithm 4, which costs 12M+ M . Finally, we compute
f0·g0, which costs M. Therefore, we take 7M+ 44M to
compute the components of Cp.

B. Computation of Matrix Multiplication (αij) · Cp

Suppose Cp is represented as (C0, C1, C2, C3, C4)T with

2njC F∈ for 0 4.j≤ ≤ Then, to compute (αij)·Cp, we may
compute αij·Cj for 0 , 4.i j≤ ≤ Here, we consider the
computation of set 0 0{() : 0 4}.i C iα ⋅ ≤ ≤ Note that the set is
obtained from xkC0 with 0 8,j≤ ≤ and this 8 is the maximum
degree of αi0. Therefore, the cost of (αi0)·C0 is 8 .M Similarly,
the costs of computing sets {(αi1)·C1}, {(αi2)·C2}, {(αi3)·C3},
and {(αi4)·C4}, are 7 ,M 7 ,M 4 ,M and 4 ,M respectively.
Therefore, we take 8 7 7 4 4 30M M M M M M+ + + + = to

Algorithm 3. Computation of f(1), f(x), f(x +1), f(x2), f((x +1)2)

Input: 2 3
0 1 2 3 2 2

() [],n nf x f f z f z f z F z x F= + + + ∈ ∈
such that x forms the basis of

2nF over F2
Output: { f(1), f(x), f(x +1), f(x2), f((x +1)2)}
1: 0 0 1 1 2 2 3 3, , ,T f T f T f T f← ← ← ←
2: 0 0 1 2 3R T T T T← + + +

3: 1 1T T x← ⋅ (cost: M)

4: 2
2 2T T x← ⋅ (cost: 2M)

5: 3
3 3T T x← ⋅ (cost: 3M)

6: 1 0 1 2 3R T T T T← + + +

7: 1 1T T x← ⋅ (cost: M)

8: 2
2 2T T x← ⋅ (cost: 2M)

9: 3
3 3T T x← ⋅ (cost: 3M)

10: 3 0 1 2 3R T T T T← + + +

11: 2
0 3 (1)T f x x← ⋅ + + (cost: 2M)

12: 2 1 1 2 0R R f f T← + + +

13: 2
0 0 (1)T T x x← ⋅ + + (cost: 2M)

14: 4 3 1 2 0R R f f T← + + +

15: return {R0, R1, R2, R3, R4} (total cost: 16M)

compute (αij)·Cp.

C. Computation of e0 and e6

We compute 0 0 0()e f gβ= ⋅ ⋅ and 3 3 3().e f gβ= ⋅ ⋅ Recall
that f0·g0 and f3·g3 were already computed when we computed
the components of Cp. Thus, the computation of e0 and e6 takes
16M because the degree of β is 8.

D. Total Cost of Proposed Multiplication Method

From sections IV.2.A, IV.2.B, and IV.2.C, we can evaluate (9)
with ()7 90 7 90 /(1) .M M n M+ = + − The cost is asymptotically
equal to 7M as n→∞ and is 7.38M in the case of n=239. On the
other hand, the previous multiplication using the Karatsuba
method requires 9M for any degree n. We summarize these
estimations in Table 3.

Table 3. Computation of cost of F←F×G.

 Any n n = 239 n → ∞

Karatsuba method 9M 9M 9M
Proposed

multiplication
method

 907
1

M
n

⎛ ⎞+⎜ ⎟−⎝ ⎠
 7.38M 7M

136 Masaaki Shirase et al. ETRI Journal, Volume 31, Number 2, April 2009

Algorithm 4. Computation of f3·g3, ··· , f3·g3·(x+1)12
Input: 3 3 2

, , nf g x F∈ such that x forms the basis of

2nF over F2
Output: {f3 g3, f3 g3x6, f3 g3(x+1) 6, f3 g3x12, f3 g3(x+1) 12}
1: 3 3T f g← ⋅ (cost: M)
2: 0 3 2 4, ,R T R T R T← ← ←

3: 2T T x← ⋅ (cost: 2M)
4: 2 2R R T← +

5: 2T T x← ⋅ (cost: 2M)
6: 2 2 4 4,R R T R R T← + ← +

7: 2T T x← ⋅ (cost: 2M)
8: 1 2 2,R T R R T← ← +

9: 2T T x← ⋅ (cost: 2M)
10: 4 4R T R← +

11: 4T T x← ⋅ (cost: 4M)
12: 3 4 4,R T R R T← ← +

13: return {R0, R1, R2, R3, R4,} (total cost: M+12M)

3. Applying Proposed Multiplication to General Cases

In this subsection, we discuss applying the proposed
multiplication to general cases. Recall that the proposed
multiplication computes relaxed multiplication β·F×G for

42
, ,nF G F∈ where

2nFβ ∈ is an element. We easily make
the general version of the proposed multiplication in any finite
field nkp

F ; thus, Cp in (9) becomes the (2k–3)th vector and (αij)
becomes a (2k–3) × (2k–3) matrix. Define np

M as the cost of a
multiplication in np

F .
Note that the proposed multiplication is effective in pairing

computations because β powers to 1 in the final exponentiation
and has no effect on the pairing value. Then, we consider
applying the proposed multiplication to other fields in Table 1.

A. Case of
3

(,nF k=6)

The
3nF version of the proposed multiplication takes

() 3
11 /(1) nn Mγ+ − , where γ is a constant number depending

on a vector Cp and a matrix (αij) in (9). Therefore, the 63 nF
version of the proposed multiplication asymptotically takes

3
11 nM to compute a relaxed multiplication in 63 nF . However,
if the Vandermonde matrix Ap is not carefully constructed, then
γ seems to be very large, and the proposed multiplication incurs
a greater cost than the GPS multiplication (see [3] or section
III.3) which takes

3
15 nM in practical cases as n is several

hundred. Finding the vector Cp and the matrix (αij) such that A
becomes smallest will be the subject of future work.

B. Case of (Fp, k=any value)

In this case components of Cp and (αij) are elements in Fp,
and computation of (αij)·Cp in (9) in general takes (2k–3)2Mp.
Therefore, the Fp version of the proposed multiplication takes
more than (2k–3)2Mp, which means the Karatsuba method is
better than the Fp version of the proposed method.

V. New Efficient Algorithm for Tη Pairing

In this section, we present a new efficient algorithm for
computing the Tη pairing using the new multiplication
method presented in section IV.

As we described in the last paragraph of section IV.2, if F×G
(random×random) at step 10 in algorithm 2 is efficiently
computed, we can obtain an algorithm for computing the Tη
pairing. Then, we proposed an efficient multiplication method
computing β·F×G instead of F×G in section IV.4. Recall that β
powers to 1 in the final exponentiation, and therefore has no
effect on the pairing value. Consequently, we can obtain a new
algorithm for computing the Tη pairing, namely, algorithm 5,
applying the proposed multiplication method to algorithm 2.

Note that we need to use the z-basis, not the st-basis, to
provide the new algorithm for the Tη pairing. However, the
conversion between the st-basis and the z-basis is virtually zero
due to (1). In algorithm 5, steps 2 to 18 are executed using the
z- basis, and the result of step 18 is converted to a value of the
st-basis. The output of algorithm 5 is then the same as
algorithm 2.

Next, we estimate algorithm 5 without the final
exponentiation, which can be efficiently computed [7]. Note
that the cost of each step of algorithm 5 except step 10 is the
same as those of algorithm 2 due to (1). Let m be the number of
iterations of the main loop of algorithm 5. Then, the cost of
algorithm 5 is calculated as

(the cost of algorithm 5)
=(the cost of algorithm 2)

+m · ((the cost of step 9 in algorithm 5)
–(the cost of step 9 in algorithm 2))

=((3.5n+4.5)M+(n-1)S+(n–1)R)+m·((7+90/(n–1))M-9M

because the cost of algorithm 2 is (3.5n+4.5)M+(n–1)S+(n–1)R
as described in section II, where M, S, and R are the cost of a
multiplication, a squaring, and a square root in

2nF ,
respectively. Note m=(n–1)/4 if 1n ≡ (mod 4), and
m=(n+1)/4 if 3n ≡ (mod 4). Then, we have the cost of
algorithm 5 as ((3n2+24.5n–27.5)/(n–1))M+(n–1)R+(n–1)S if

1n ≡ (mod 4) and as ((3n2+23.5n+18.5)/(n–1))M+(n–1)
R+(n–1)S if 3n ≡ (mod 4).

ETRI Journal, Volume 31, Number 2, April 2009 Masaaki Shirase et al. 137

Algorithm 5. Proposed algorithm for Tη pairing

Input:
2

(,), (,) ()n
bP Q E Fα β γ δ= = ∈

Output: 4
*

2
(,) nT P Q Fη ∈

1: 1
2

nw α −⎡ ⎤← + ⎢ ⎥⎣ ⎦

2: (1) / 2(1) ()nF w bγ α δ β ε +← ⋅ + + + + + +
2(1) ()w z w zγ γ+ + + + + (cost : M)

3: for i=0 to (3) / 4n −⎢ ⎥⎣ ⎦ do

4: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦

5: 0 (1) / 2
1 ()

2 n
nG w bγ δ β ε −

⎛ ⎞+⎡ ⎤← ⋅ + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

2(1) ()w z w zγ γ+ + + + + (G0 is z-sparse, cost: M)

6: 2 2, , ,α α β β γ γ δ δ← ← ← ← (cost: 2R+2S)

7: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦

8: 1 (1) / 2
1 ()

2 n
nG w bγ δ β ε −

⎛ ⎞+⎡ ⎤← ⋅ + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

2(1) ()w z w zγ γ+ + + + + (G1 is z-sparse, cost: M)

9: G←G0⋈G1 (cost: 3M)
10: F←β·F×G , where β =x8+x6+x5+x3
 (computed by (9), cost: by Table 3)
11: 2 2, , ,α α β β γ γ δ δ← ← ← ← (cost: 2R+2S)

(11 is unnecessary if 3n ≡ (mod 4) for i= (3) / 4n −⎢ ⎥⎣ ⎦)
12: end if
13: if 1i ≡ (mod 4) then

14: 1
2

nw α +⎡ ⎤← + ⎢ ⎥⎣ ⎦

15: 0 (1) / 2
1 ()

2 n
nG w bγ δ β ε −

⎛ ⎞+⎡ ⎤← ⋅ + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 2(1) ()w z w zγ γ+ + + + + (G0 is z-sparse, cost: M)

16: F←F⋊G (cost : 6M)
17: end if
18: (f0, f1, f2, f3)z←FW (cost: FE)
19: return (f0, f2+f3, f1+ f2+ f3, f3)st

We aim to estimate the costs of algorithms 1, 2, and 5 using

only M to easily compare the proposed algorithm 5 with the
conventional algorithms 1 and 2. We then need a relationship
among M, S, and R. Suppose that R=0.5M as followed by
Kwon [7]. Note that

21/ 2 2n

a a
−

= for any
2na F∈ because

2 .
n

a a= Therefore, (n–2)S=R, that is, 1/(2 4) .S n M= − ⋅
The comparison is shown in Table 4.

Table 4. Cost comparison between algorithms 1 and 2 and algorithm 5.

 n=239 n → ∞
Algorithms 1 and 2 960.5M 4nM

Proposed algorithm 5 863.2M 3.5nM

Table 5. Comparison of multiplication cost in 42 nF .

Number of multiplications
in 42 nF Cost

Without loop unrolling
(n+1)/2

“sparse by random”
3(n+1)M (Karatsuba)

With loop unrolling
(n+1)/4

“sparse by sparse”
0.75(n+1)M (Karatsuba)

(n+1)/4
“random by random”

2.25(n+1)M (Karatsuba or GPS)
1.75(n+1)M (Proposed)

Total
3 (n+1)M (Karatsuba or GPS)
2.5 (n+1)M (Proposed)

Therefore, the cost of computing the Tη pairing is reduced
by 11.3% and 14.3% for n=239 and n → ∞ , respectively.

VI. Conclusion

The loop unrolling technique and the GPS multiplication are
effective in the Tη pairing on supersingular curve in
characteristic three. However, they are ineffective in the Tη
pairing in characteristic two. In the case of characteristic two,
the loop unrolling technique changes (n+1)/2 multiplications of
“sparse element by random element” in 42 nF in the algorithm
for computing the Tη pairing (algorithm 1) to (n+1)/4 “sparse
by sparse” multiplications and (n+1)/4 “random by random”
multiplications. Note that multiplications of a “sparse by
random,” a “sparse by sparse,” and a “random by random” in

42 nF take 6M, 3M, and 9M, respectively, using the Karatsuba
method, where M means the cost of a multiplication in

2nF .
The GPS multiplication is a method to compute a
multiplication of “random by random,” and in the case of 42 nF
the GPS multiplication incurs the same cost as the Karatsuba
method. Then, the loop unrolling technique and the GPS
multiplication are ineffective in the Tη pairing in characteristic
two.

We introduced a relaxed multiplication which computes
β·F×G instead of F×G for 42

, ,nF G F∈ where β is an
element in

2nF . The β powers to 1 in the final exponentiation

138 Masaaki Shirase et al. ETRI Journal, Volume 31, Number 2, April 2009

and therefore has no effect on the pairing value. The relaxed
multiplication can be computed using the Vandermonde matrix,
the inverse of which has coefficients of small degrees. The
multiplication in 42 nF can be computed by 7 multiplications
in

2nF for n → ∞ , while the previously fastest Karatsuba
method requires 9 multiplications. Consequently, the cost of
the Tη pairing computation is reduced by 14.3% as n → ∞ .

Appendix. Sparse Multiplication

To describe the cost of (c) in Table 3, we provide the
algorithms A1 and A2 for computing a multiplication of (st, z)-
sparse elements in 42 nF .

Algorithm A1. Multiplication of st-sparse elements in 42 nF

Input: st-sparse a=(a0, a1, 1, 0)st, 40 1 2
(, ,1,0) nstb b b F= ∈

Output: c=(c0, c 1, c2, c3)st:=a⋈b
1: 0 0 0T a b← ⋅ (cost: M)
2: 1 1 1T a b← ⋅ (cost: M)
3: 2 0 1 0 1() ()T a a b b← + ⋅ + (cost: M)
4: 0 0 1R T T← +
5: 1 0 2 1R T T← + +
6: 2 0 0 1R a b← + +
7: 3 1 1R a b← +
8: return (R0, R1, R2, R3)st

Algorithm A2. Multiplication of z-sparse elements in 42 nF

Input: z-sparse a=(a0, a1+1, a1, 0)z, b=(b0, b1+1, b1, 0)z 42 nF∈

Output: c=(c0, c 1, c2, c3)z:=a⋈b
1: 0 0 0T a b← ⋅ (cost: M)
2: 1 1 1T a b← ⋅ (cost: M)
3: 2 0 1 0 1() ()T a a b b← + ⋅ + (cost: M)
4: 0 0 1R T T← +
5: 1 0 2 0 0R T T a b← + + +
6: 2 0 2 1 1 1R T T a b← + + + +
7: 3 1 1R a b← +
8: return (R0, R1, R2, R3)z

References

[1] P. Barreto et al., “Efficient Pairing Computation on Supersingular
Abelian Varieties,” Designs, Codes and Cryptography, vol. 42,
no. 3, 2007, pp. 239-271.

[2] R. Granger, D. Page, and M. Stam, “Hardware and Software
Normal Basis Arithmetic for Pairing-Based Cryptography in

Characteristic Three,” IEEE Transactions on Computers, vol. 54,
no. 7, 2005, pp. 852-860.

[3] E. Gorla, C. Puttmann, and J. Shokrollahi, “Explicit Formulas for
Efficient Multiplication in 63

,mF ” SAC 2007, LNCS 4876, 2007,
pp. 163-183.

[4] D.E. Knuth, Seminumerical Algorithms, Addison-Wesley, 1981.
[5] F. Hess, N. Smart, and F. Vercauteren, “The Eta Pairing

Revisited,” IEEE Transactions on Information Theory, vol. 52, no.
10, 2006, pp. 4595-4602.

[6] D.H. Choi, D.G. Han, and H.W. Kim, “Construction of Efficient
and Secure Pairing Algorithm and Its Application,” Cryptology
ePrint Archive, Report 2007/296, 2007.

[7] S. Kwon, “Efficient Tate Pairing Computation for Supersingular
Elliptic Curves over Binary Fields,” Cryptology ePrint Archive,
Report 2004/303, 2004.

[8] J.-L. Beuchat et al., “Algorithms and Arithmetic Operators for
Computing the Tη Pairing in Characteristic Three,” Cryptology
ePrint Archive, Report 2007/417, 2007.

[9] P. Bürgsser, M. Clausen, and M. Shokrollahi, Algebraic
Complexity Theory, Springer-Verlag, 1997.

[10] PARI/GP, http://pari.math.u-bordeaux.fr/download.html
[11] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic

Curve Cryptography, Springer, 2004.
[12] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of

Applied Cryptography, CRC Press, 1997.

Masaaki Shirase received the BSc in
mathematics from Ibaraki University in 1994,
and MIS and DrIS degrees from Japan
Advanced Institute of Science and Technology
(JAIST) in 2003 and 2006, respectively. He is
currently a research associate with the School of
System Science Information at Future

University-Hakodate. His research interests are algorithms and
implementation of cryptography.

Tsuyoshi Takagi received the BSc and MSc
degrees in mathematics from Nagoya
University in 1993 and 1995, respectively. He
engaged in research on network security at NTT
Laboratories from 1995 to 2001. He received
the Dr.rer.nat degree from Technische
Universität Darmstadt in 2001. He was an

assistant professor with the Department of Computer Science at
Technische Universität Darmstadt until 2005. He is currently a
professor with the School of Systems Information Science at Future
University-Hakodate. His current research interests are information
security and cryptography. Dr. Takagi is a member of International
Association for Cryptologic Research (IACR).

ETRI Journal, Volume 31, Number 2, April 2009 Masaaki Shirase et al. 139

Dooho Choi received his BS degree in
mathematics from Sungkyunkwan University,
Seoul, Korea in 1994, and the MS and PhD
degrees in mathematics from Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, Korea, in 1996 and 2002, respectively.
He has been a senior researcher with Electronics

and Telecommunications Research Institute (ETRI), Daejeon, Korea
since Jan. 2002. His research interests include security technologies of
RFID and wireless sensor networks. He is an editor of the ITU-T
X.1171 (X.nidsec-1).

DongGuk Han received his BS degree in
mathematics from Korea University in 1999,
and his MS degree in mathematics from Korea
University in 2002. He received his PhD of
engineering in Information Security from Korea
University in 2005. He was a PostDoc with
Future University-Hakodate, Japan. After

finishing the doctoral course, he was an exchange student with the
Department of Computer Science and Communication Engineering,
Kyushu University, Japan from April 2004 to March 2005. He was a
senior researcher in Electronics and Telecommunications Research
Institute (ETRI), Daejeon, Rep. of Korea. He is currently working as an
assistant professor with the Department of Mathematics of Kookmin
University, Seoul, Rep. of Korea. He is a member of KIISC, IEEK, and
IACR.

Howon Kim received his BSEE degree from
Kyungpook National University, Daegu, Korea,
in 1993, and the MS and PhD degrees in
electronic and electrical engineering from
Pohang University of Science and Technology
(POSTECH), Pohang, Korea, in 1995 and 1999,
respectively. From July 2003 to June 2004, he

studied at the COSY group at the Ruhr-University of Bochum,
Germany. He was a senior member of technical staff at the Electronics
and Telecommunications Research Institute (ETRI), Daejeon, Korea.
He is currently working as an assistant professor with the Department
of Computer Engineering, Pusan National University, Busan, Korea.
His research interests include RFID technology, sensor networks,
information security, and computer architecture. Currently, his main
research focus is on mobile RFID technology and sensor networks,
public key cryptosystems and their security issues. He is a member of
the IEEE, IEEE Computer Society, and IACR.

