• 제목/요약/키워드: Finite difference model

검색결과 1,161건 처리시간 0.025초

불투수성 경사면에서 파의 처오름과 반사 (Runup and Reflection of Waves on Impermeable Slopes of Coastal Structures)

  • 이철응
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.175-185
    • /
    • 2001
  • A numerical model is represented to calculate the reflected waves, the runup of waves and the wave induced velocities on impermeable slopes for the normally incident wave trains of nonlinear monochromatic wave and solitary wave. The finite amplitude shallow water equations with the effects of bottom friction are solved numerically in time domain using an explicit dissipative Lax-Wendroff finite difference method. The numerical model is verified by comparisons with the other numerical results, the measured data and asymptotic results. It is found that the uprushing and downrushing of incident waves may be accurately predicted by the present numerical model. Therefore, the present numerical model can be applicable to swells as well as long waves.

  • PDF

A Comparison between 3-D Analytical and Finite Difference Method for a Trapezoidal Profile Fin

  • 이성주;강형석
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.41-50
    • /
    • 2001
  • A comparison is made of the temperature distribution and heat loss from a trapezoidal profile fin using two different 3-dimensional methods. These two methods are analytical and finite difference methods. In the finite difference method 78 nodes are used for a fourth of the fin. A trapezoidal profile fin being the height of the fin tip is half of that of the fin base is chosen arbitrarily as the model. One of the results shows that the relative error in the total convection heat loss obtained by using 78 nodes in the finite difference method as compared to the heat conduction through the fin root obtained by analytic method seems to be good (i.e., -3.5%

  • PDF

차분격자볼츠만법에 의한 유체음의 직접계산 (Direct Simulation of Acoustic Sound by the Finite Difference Lattice Boltzmann Method)

  • 강호근;노기덕;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1827-1832
    • /
    • 2003
  • In this research, the simulation method for acoustic sounds by a uniform flow around a two-dimensional circular cylinder by using the finite difference lattice Boltzmann model is explained. To begin with, we examine the boundary condition which determined with the distribution function $f_i^{(0)}$ concerning with density, velocity and internal energy at boundary node. Very small acoustic pressure fluctuation, with same frequency as that of Karman vortex street, is compared with the pressure fluctuation around a circular cylinder. The acoustic sound' propagation velocity shows that acoustic approa ching the upstream, due to the Doppler effect in the uniform flow, slowly propagated. For the do wnstream, on the other hand, it quickly propagates. It is also apparently the size of sound pressure was proportional to the central distance $r^{-1/2}$ of the circular cylinder. The lattice BGK model for compressible fluids is shown to be one of powerful tool for simulation of gas flows.

  • PDF

차분격자볼츠만법에 의한 유동소음의 수치계산 (Numerical Simulation of Aerodynamic Sound by the Finite Difference Lattice Boltzmann Method)

  • 강호근;김은라
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.10-17
    • /
    • 2004
  • In this research, a numerical simulation for the acoustic sounds around a two-dimensional circular cylinder in a uniform flaw was developed, using the finite difference lattice Boltzmann model. We examine the boundary condition, which is determined by the distribution function concerning density, velocity, and internal energy at the boundary node. Pressure variation, due to the emission of the acoustic waves, is very small, but we can detect this periodic variation in the region far from the cylinder. Daple-like emission of acoustic waves is seen, and these waves travel with the speed of sound, and are synchronized with the frequency of the lift on the cylinder, due to the Karman vortex street. It is also apparent that the size of the sound pressure is proportional to the central distance to the circular cylinder. The lattice BGK model for compressible fluids is shown to be a powerful tool for the simulation of gas flaws.

DEVELOPMENT OF A NON-STANDARD FINITE DIFFERENCE METHOD FOR SOLVING A FRACTIONAL DECAY MODEL

  • SAID AL KATHIRI;EIHAB BASHIER;NUR NADIAH ABD HAMID;NORSHAFIRA RAMLI
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.695-708
    • /
    • 2024
  • In this paper we present a non-standard finite difference method for solving a fractional decay model. The proposed NSFDM is constructed by incorporating a non-standard denominator function, resulting in an explicit numerical scheme as easy as the conventional Euler method, but it provides very accurate solutions and has unconditional stability. Two examples from the literature are presented to demonstrate the performance of the proposed numerical scheme, which is compared to three methods from the literature. It is found that the method's estimated errors are extremely minimal, such as within the machine precision.

MIRA Vehicle Model 주위의 3차원 난류유동 예측 (Prediction of Three Dimensional Turbulent flows around a MIRA Vehicle Model)

  • 명현국;진은주
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.86-96
    • /
    • 1998
  • A numerical study has been carried out of three-dimensional turbulent flows around a MIRA reference vehicle model both with and without wheels in computation. Two convective difference schemes with two k-$\varepsilon$ turbulence models are evaluated for the performance such as drag coefficient, velocity and pressure fields. Pressure coefficients along the surfaces of the model are compared with experimental data. The drag coefficient, the velocity and pressure fields are found to change considerably with the adopted finite difference schemes. Drag forces computed in the various regions of the model indicate that design change decisions should not rely just on the total drag and that local flow structures are important. The results also indicate that the RNG model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient rather than the other cases.

  • PDF

An improved 1D-model for computing the thermal behaviour of concrete dams during operation. Comparison with other approaches

  • Santillan, D.;Saleteb, E.;Toledob, M.A.;Granados, A.
    • Computers and Concrete
    • /
    • 제15권1호
    • /
    • pp.103-126
    • /
    • 2015
  • Thermal effects are significant loads for assessing concrete dam behaviour during operation. A new methodology to estimate thermal loads on concrete dams taking into account processes which were previously unconsidered, such as: the evaporative cooling, the night radiating cooling or the shades, has been recently reported. The application of this novel approach in combination with a three-dimensional finite element method to solve the heat diffusion equation led to a precise characterization of the thermal field inside the dam. However, that approach may be computationally expensive. This paper proposes the use of a new one-dimensional model based on an explicit finite difference scheme which is improved by means of the reported methodology for computing the heat fluxes through the dam faces. The improved model has been applied to a case study where observations from 21 concrete thermometers and data of climatic variables were available. The results are compared with those from: (a) the original one-dimensional finite difference model, (b) the Stucky-Derron classical one-dimensional analytical solution, and (c) a three-dimensional finite element method. The results of the improved model match well with the observed temperatures, in addition they are similar to those obtained with (c) except in the vicinity of the abutments, although this later is a considerably more complex methodology. The improved model have a better performance than the models (a) and (b), whose results present larger error and bias when compared with the recorded data.

ON A CERTAIN FINITE DIFFERENCE SCHEME FOR A MODEL FOR DIFFUSION OF BIOLOGICAL POPULATIONS

  • Asghar, Kerayechian
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.455-466
    • /
    • 1999
  • In this note we present a numerical scheme for finding an approxximate solution of an equation which can be viewed as a model for spatial diffusion of age-depednent biological populations. Discretization of the model yields a linear system with a block tridi-agonal matrix. Our main concern will be discussion of stability for this scheme by examining the eigenvalues of the block tridiagonal matrix. Numerical results are presented.

유한 베어링 모델링을 이용한 왕복동형 압축기 크랭크축의 동적 거동 및 윤활특성 해석 (Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor Crankshaft by n Finite Bearing Model)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제18권6호
    • /
    • pp.402-410
    • /
    • 2002
  • In this study, a hydrodynamic analysis of the reciprocating compressor crankshaft considering a finite bearing modelling of the journal bearings used in small refrigeration compressors is performed. In the problem formulation of the compression mechanism dynamics, all corresponding hydrodynamic forces and moments are considered using the finite bearing analysis in order to determine the crankshaft trajectory at each step. The solution of the Reynolds' equation is determined numerically using a finite difference method and a Newton-Raphson procedure was employed in solving the dynamic equations of the crankshaft. The crankshaft orbits fur the finite bearing model and short bearing theory were used to compare the effect of the hydrodynamic farces of the journal bearings on the dynamic and lubrication characteristics of the crankshaft-journal bearing system. Results show that the finite bearing model for the journal bearings must be considered in calculating for the accurate dynamic characteristics of the reciprocating compressor crankshaft.

내부자유도를 갖는 차분래티스볼츠만 모델에 의한 에지톤의 수치계산 (Numerical Simulation of Edge Tone by Finite Difference Lattice Boltzmann Model with Internal Degree of Freedom)

  • 강호근;김은라;오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.929-937
    • /
    • 2005
  • A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic 9as such as air is successfully simulated In a weak compressive wane problem and Coutte flow, the validity and characteristics of the applied model are examined. With the model. furthermore. we present a 2-dimensional edge tones to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLB model (I.D.F FDLBM) in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guaranteed the Parabolic velocity profile of a jet at the outlet. and the edges have of an angle of $\alpha$=$23^{0}$ and $20^{0}$. A sinuous instability wane with real frequency resulting from Periodic oscillation of the jet around the edge is propagated on the upper and lower of wedge.